{"title":"Municipal Solid Waste (MSW) characterization for possible Waste-to-Energy (WtE) conversion in Zambia","authors":"Brian C Mushimba","doi":"10.23954/OSJ.V3I4.1734","DOIUrl":null,"url":null,"abstract":"Coal has traditionally been relied upon as a good source of bulk energy in many pyro processes especially in cement manufacturing and thermal power generation. In Zambia, cement manufacturing, a key and growing industry, uses coal as the main source of energy for the pyro process in the cement kiln that converts raw materials to a semi-finished product called clinker. Despite the advantages that coal has over other sources of energy in this market including its high energy content and its easy accessibility, burning coal has significant known and documented disadvantages especially towards the environment and human health that give way to dissenting views on its continued use. In attempts to address the environmental effects of coal usage in cement manufacturing and consequently contribute to the lowering of production costs, Cement manufacturing companies have been pursuing the possibilities of coal substitution with Municipal Solid Waste (MSW). The MSW should however; conform to certain standards before it can be used in the substitution in order not to affect the quality of cement produced. This paper sought to characterize the Municipal Solid Waste in Lusaka to ascertain its conformity to internationally recognized standards in order to be used in coal substitution. The results show that the characterization of MSW showed that it could be a viable substitute for coal burning in cement manufacturing in Zambia. Apart from the high moisture content in the rainy season, the other readings were all favorable to its use as an alternate energy source. The high moisture content meant that during the pre-treatment for possible use in the cement manufacturing, pretreatment processes could be employed to help align the moisture content before its use as the substitute for coal in cement manufacturing.","PeriodicalId":22809,"journal":{"name":"The Open Food Science Journal","volume":"99 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Open Food Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23954/OSJ.V3I4.1734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Coal has traditionally been relied upon as a good source of bulk energy in many pyro processes especially in cement manufacturing and thermal power generation. In Zambia, cement manufacturing, a key and growing industry, uses coal as the main source of energy for the pyro process in the cement kiln that converts raw materials to a semi-finished product called clinker. Despite the advantages that coal has over other sources of energy in this market including its high energy content and its easy accessibility, burning coal has significant known and documented disadvantages especially towards the environment and human health that give way to dissenting views on its continued use. In attempts to address the environmental effects of coal usage in cement manufacturing and consequently contribute to the lowering of production costs, Cement manufacturing companies have been pursuing the possibilities of coal substitution with Municipal Solid Waste (MSW). The MSW should however; conform to certain standards before it can be used in the substitution in order not to affect the quality of cement produced. This paper sought to characterize the Municipal Solid Waste in Lusaka to ascertain its conformity to internationally recognized standards in order to be used in coal substitution. The results show that the characterization of MSW showed that it could be a viable substitute for coal burning in cement manufacturing in Zambia. Apart from the high moisture content in the rainy season, the other readings were all favorable to its use as an alternate energy source. The high moisture content meant that during the pre-treatment for possible use in the cement manufacturing, pretreatment processes could be employed to help align the moisture content before its use as the substitute for coal in cement manufacturing.