{"title":"Effect of SAPs and polypropylene fibres on the freeze-thaw resistance of low carbon roller compacted concrete pavement","authors":"Vahid Afroughsabet, A. Al-Tabbaa","doi":"10.1051/matecconf/202337808006","DOIUrl":null,"url":null,"abstract":"Most concrete currently used in pavement is based on Portland cement (PC), being responsible for 8-10% of total CO2 emission. Moreover, external pavements are subjected to exposure classes XF4 and XD3 which are related to corrosion and freeze-thaw. Freeze-thaw resistance is an important durability property of concrete, especially for concrete pavements that are subjected to the de-icing salts. This study was designed to explore the freeze-thaw resistance and mass scaling resistance of low carbon Roller Compacted Concrete (RCC) in the presence of water and de-icing salts. Four different RCC mixes were used with a water/binder ratio of 0.45. PC was replaced with 80% ground granulated blast-furnace slag (GGBS) in all mixes to develop low carbon concrete and move towards a more sustainable cementitious composite. To assess the effectiveness of smart engineered additives, superabsorbent polymers (SAPs) were used at 0.3% by weight of total binder, and Polypropylene (PP) fibre with 12-mm length at fibre volume fractions of 0.3% for the mitigation of freeze-thaw damage. The compressive strength, freeze-thaw resistance, and mass scaling resistance of concrete specimens were evaluated. The results indicate that both additives improved the compressive strength and freeze-thaw resistance of concrete with and without de-icing salts. The inclusion of PP fibre was more effective compared to the addition of SAPs to mitigate the extent of internal structural damage and mass scaling of self-healing concrete mixes with respect to the reference concrete after 56 freeze-thaw cycles.","PeriodicalId":18309,"journal":{"name":"MATEC Web of Conferences","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MATEC Web of Conferences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/matecconf/202337808006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Most concrete currently used in pavement is based on Portland cement (PC), being responsible for 8-10% of total CO2 emission. Moreover, external pavements are subjected to exposure classes XF4 and XD3 which are related to corrosion and freeze-thaw. Freeze-thaw resistance is an important durability property of concrete, especially for concrete pavements that are subjected to the de-icing salts. This study was designed to explore the freeze-thaw resistance and mass scaling resistance of low carbon Roller Compacted Concrete (RCC) in the presence of water and de-icing salts. Four different RCC mixes were used with a water/binder ratio of 0.45. PC was replaced with 80% ground granulated blast-furnace slag (GGBS) in all mixes to develop low carbon concrete and move towards a more sustainable cementitious composite. To assess the effectiveness of smart engineered additives, superabsorbent polymers (SAPs) were used at 0.3% by weight of total binder, and Polypropylene (PP) fibre with 12-mm length at fibre volume fractions of 0.3% for the mitigation of freeze-thaw damage. The compressive strength, freeze-thaw resistance, and mass scaling resistance of concrete specimens were evaluated. The results indicate that both additives improved the compressive strength and freeze-thaw resistance of concrete with and without de-icing salts. The inclusion of PP fibre was more effective compared to the addition of SAPs to mitigate the extent of internal structural damage and mass scaling of self-healing concrete mixes with respect to the reference concrete after 56 freeze-thaw cycles.
期刊介绍:
MATEC Web of Conferences is an Open Access publication series dedicated to archiving conference proceedings dealing with all fundamental and applied research aspects related to Materials science, Engineering and Chemistry. All engineering disciplines are covered by the aims and scope of the journal: civil, naval, mechanical, chemical, and electrical engineering as well as nanotechnology and metrology. The journal concerns also all materials in regard to their physical-chemical characterization, implementation, resistance in their environment… Other subdisciples of chemistry, such as analytical chemistry, petrochemistry, organic chemistry…, and even pharmacology, are also welcome. MATEC Web of Conferences offers a wide range of services from the organization of the submission of conference proceedings to the worldwide dissemination of the conference papers. It provides an efficient archiving solution, ensuring maximum exposure and wide indexing of scientific conference proceedings. Proceedings are published under the scientific responsibility of the conference editors.