{"title":"Single particle electron cryomicroscopy: trends, issues and future perspective","authors":"K. Vinothkumar, R. Henderson","doi":"10.1017/S0033583516000068","DOIUrl":null,"url":null,"abstract":"Abstract There has been enormous progress during the last few years in the determination of three-dimensional biological structures by single particle electron cryomicroscopy (cryoEM), allowing maps to be obtained with higher resolution and from fewer images than required previously. This is due principally to the introduction of a new type of direct electron detector that has 2- to 3-fold higher detective quantum efficiency than available previously, and to the improvement of the computational algorithms for image processing. In spite of the great strides that have been made, quantitative analysis shows that there are still significant gains to be made provided that the problems associated with image degradation can be solved, possibly by minimising beam-induced specimen movement and charge build up during imaging. If this can be achieved, it should be possible to obtain near atomic resolution structures of smaller single particles, using fewer images and resolving more conformational states than at present, thus realising the full potential of the method. The recent popularity of cryoEM for molecular structure determination also highlights the need for lower cost microscopes, so we encourage development of an inexpensive, 100 keV electron cryomicroscope with a high-brightness field emission gun to make the method accessible to individual groups or institutions that cannot afford the investment and running costs of a state-of-the-art 300 keV installation. A key requisite for successful high-resolution structure determination by cryoEM includes interpretation of images and optimising the biochemistry and grid preparation to obtain nicely distributed macromolecules of interest. We thus include in this review a gallery of cryoEM micrographs that shows illustrative examples of single particle images of large and small macromolecular complexes.","PeriodicalId":20828,"journal":{"name":"Quarterly Reviews of Biophysics","volume":"295 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2016-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"146","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Reviews of Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1017/S0033583516000068","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 146
Abstract
Abstract There has been enormous progress during the last few years in the determination of three-dimensional biological structures by single particle electron cryomicroscopy (cryoEM), allowing maps to be obtained with higher resolution and from fewer images than required previously. This is due principally to the introduction of a new type of direct electron detector that has 2- to 3-fold higher detective quantum efficiency than available previously, and to the improvement of the computational algorithms for image processing. In spite of the great strides that have been made, quantitative analysis shows that there are still significant gains to be made provided that the problems associated with image degradation can be solved, possibly by minimising beam-induced specimen movement and charge build up during imaging. If this can be achieved, it should be possible to obtain near atomic resolution structures of smaller single particles, using fewer images and resolving more conformational states than at present, thus realising the full potential of the method. The recent popularity of cryoEM for molecular structure determination also highlights the need for lower cost microscopes, so we encourage development of an inexpensive, 100 keV electron cryomicroscope with a high-brightness field emission gun to make the method accessible to individual groups or institutions that cannot afford the investment and running costs of a state-of-the-art 300 keV installation. A key requisite for successful high-resolution structure determination by cryoEM includes interpretation of images and optimising the biochemistry and grid preparation to obtain nicely distributed macromolecules of interest. We thus include in this review a gallery of cryoEM micrographs that shows illustrative examples of single particle images of large and small macromolecular complexes.
期刊介绍:
Quarterly Reviews of Biophysics covers the field of experimental and computational biophysics. Experimental biophysics span across different physics-based measurements such as optical microscopy, super-resolution imaging, electron microscopy, X-ray and neutron diffraction, spectroscopy, calorimetry, thermodynamics and their integrated uses. Computational biophysics includes theory, simulations, bioinformatics and system analysis. These biophysical methodologies are used to discover the structure, function and physiology of biological systems in varying complexities from cells, organelles, membranes, protein-nucleic acid complexes, molecular machines to molecules. The majority of reviews published are invited from authors who have made significant contributions to the field, who give critical, readable and sometimes controversial accounts of recent progress and problems in their specialty. The journal has long-standing, worldwide reputation, demonstrated by its high ranking in the ISI Science Citation Index, as a forum for general and specialized communication between biophysicists working in different areas. Thematic issues are occasionally published.