{"title":"A lp-norm MTMKL framework for simultaneous detection of multiple facial action units","authors":"Xiao Zhang, M. Mahoor, S. Mavadati, J. Cohn","doi":"10.1109/WACV.2014.6835735","DOIUrl":null,"url":null,"abstract":"Facial action unit (AU) detection is a challenging topic in computer vision and pattern recognition. Most existing approaches design classifiers to detect AUs individually or AU combinations without considering the intrinsic relations among AUs. This paper presents a novel method, lp-norm multi-task multiple kernel learning (MTMKL), that jointly learns the classifiers for detecting the absence and presence of multiple AUs. lp-norm MTMKL is an extension of the regularized multi-task learning, which learns shared kernels from a given set of base kernels among all the tasks within Support Vector Machines (SVM). Our approach has several advantages over existing methods: (1) AU detection work is transformed to a MTL problem, where given a specific frame, multiple AUs are detected simultaneously by exploiting their inter-relations; (2) lp-norm multiple kernel learning is applied to increase the discriminant power of classifiers. Our experimental results on the CK+ and DISFA databases show that the proposed method outperforms the state-of-the-art methods for AU detection.","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"17 1","pages":"1104-1111"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2014.6835735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38
Abstract
Facial action unit (AU) detection is a challenging topic in computer vision and pattern recognition. Most existing approaches design classifiers to detect AUs individually or AU combinations without considering the intrinsic relations among AUs. This paper presents a novel method, lp-norm multi-task multiple kernel learning (MTMKL), that jointly learns the classifiers for detecting the absence and presence of multiple AUs. lp-norm MTMKL is an extension of the regularized multi-task learning, which learns shared kernels from a given set of base kernels among all the tasks within Support Vector Machines (SVM). Our approach has several advantages over existing methods: (1) AU detection work is transformed to a MTL problem, where given a specific frame, multiple AUs are detected simultaneously by exploiting their inter-relations; (2) lp-norm multiple kernel learning is applied to increase the discriminant power of classifiers. Our experimental results on the CK+ and DISFA databases show that the proposed method outperforms the state-of-the-art methods for AU detection.