S. Vijay Rakesh Reddy, D. S. Sudhakar Rao, R.R. Sharma, P. Preethi, R. Pandiselvam
{"title":"Role of Ozone in Post-Harvest Disinfection and Processing of Horticultural Crops: A Review","authors":"S. Vijay Rakesh Reddy, D. S. Sudhakar Rao, R.R. Sharma, P. Preethi, R. Pandiselvam","doi":"10.1080/01919512.2021.1994367","DOIUrl":null,"url":null,"abstract":"ABSTRACT Consumers’ awareness toward nutritionally superior foods and improved knowledge of human health have enhanced the inclusion of fruits and vegetables as an integral part of regular dietary intake. However, concerns regarding the safety and quality of foods especially with reference to the outbreak of foodborne illnesses cause a major complication in the consumption of fruits and vegetables. Other major concerns, besides the safety of food from foodborne pathogens, include spoilage due to microbes and chemical pesticide residues. Traditionally, fresh fruits and vegetables are sanitized using chemicals, viz., chlorine, peracetic acid, electrolyzed water, hydrogen peroxide, etc. All these chemicals have been proven to exhibit ill effects over the consumers and the environment over a period of time, and thus, there is a great need for a safe alternative technique, which is eco-friendly and sustainable industrially. Ozone treatment is one such green technology available with multiple benefits such as antimicrobial nature, shelf life extension, pesticide residue removal, starch modification, waste water treatment, and many other industrial applications. It was also approved by FDA as a Generally Recognized As Safe (GRAS) sanitizer because of its eco-friendly nature (degradation into nonharmful oxygen after a short half-life) in addition to its inherent antimicrobial and antiethylene activity. This review focouses on ozone, its mode of action, and its applications in different horticultural crops with potential industrial use.","PeriodicalId":19580,"journal":{"name":"Ozone: Science & Engineering","volume":"12 1","pages":"127 - 146"},"PeriodicalIF":2.1000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ozone: Science & Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/01919512.2021.1994367","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 16
Abstract
ABSTRACT Consumers’ awareness toward nutritionally superior foods and improved knowledge of human health have enhanced the inclusion of fruits and vegetables as an integral part of regular dietary intake. However, concerns regarding the safety and quality of foods especially with reference to the outbreak of foodborne illnesses cause a major complication in the consumption of fruits and vegetables. Other major concerns, besides the safety of food from foodborne pathogens, include spoilage due to microbes and chemical pesticide residues. Traditionally, fresh fruits and vegetables are sanitized using chemicals, viz., chlorine, peracetic acid, electrolyzed water, hydrogen peroxide, etc. All these chemicals have been proven to exhibit ill effects over the consumers and the environment over a period of time, and thus, there is a great need for a safe alternative technique, which is eco-friendly and sustainable industrially. Ozone treatment is one such green technology available with multiple benefits such as antimicrobial nature, shelf life extension, pesticide residue removal, starch modification, waste water treatment, and many other industrial applications. It was also approved by FDA as a Generally Recognized As Safe (GRAS) sanitizer because of its eco-friendly nature (degradation into nonharmful oxygen after a short half-life) in addition to its inherent antimicrobial and antiethylene activity. This review focouses on ozone, its mode of action, and its applications in different horticultural crops with potential industrial use.
期刊介绍:
The only journal in the world that focuses on the technologies of ozone and related oxidation technologies, Ozone: Science and Engineering brings you quality original research, review papers, research notes, and case histories in each issue. Get the most up-to date results of basic, applied, and engineered research including:
-Ozone generation and contacting-
Treatment of drinking water-
Analysis of ozone in gases and liquids-
Treatment of wastewater and hazardous waste-
Advanced oxidation processes-
Treatment of emerging contaminants-
Agri-Food applications-
Process control of ozone systems-
New applications for ozone (e.g. laundry applications, semiconductor applications)-
Chemical synthesis.
All submitted manuscripts are subject to initial appraisal by the Editor, and, if found suitable for further consideration, to peer review by independent, anonymous expert referees.