{"title":"The Bateman-type variational formalism for an acoustically-driven drop","authors":"A. Timokha","doi":"10.15407/dopovidi2023.03.017","DOIUrl":null,"url":null,"abstract":"By employing the Clebsch potentials, the Bateman-type variational formulation for a drop levitating in an acoustic field is proposed when both fluids, liquid drop and external ullage gas, are barotropic, inviscid, compressible and admit rotational flows","PeriodicalId":20898,"journal":{"name":"Reports of the National Academy of Sciences of Ukraine","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports of the National Academy of Sciences of Ukraine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/dopovidi2023.03.017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
By employing the Clebsch potentials, the Bateman-type variational formulation for a drop levitating in an acoustic field is proposed when both fluids, liquid drop and external ullage gas, are barotropic, inviscid, compressible and admit rotational flows