{"title":"Influence of near UV radiation on organic thin film transistor based on conductive polymer and ZnO thin films blend","authors":"P. Kaluzynski, M. Procek, A. Stolarczyk","doi":"10.1117/12.2539513","DOIUrl":null,"url":null,"abstract":"This work presents an investigation on UV radiation on conductive copolymer regio-regular poly(3-hexyltiophene) (rr- P3HT) and its mixture with zinc oxide nanomaterial as an organic-inorganic blend, which was used as a sensing layer for organic thin film transistor or chemoresistor for gas sensing. Morphology like sample roughness, zinc oxide particles distribution and electrical properties were measured of obtained thin film deposited on TFT substrate using airbrush method. The study shows that there is a significant influence on operating parameters of OTFT by the irradiation of UV light. Given results shows the possibility of using such polymer blend in the implementation of gas sensing applications.","PeriodicalId":50449,"journal":{"name":"Fiber and Integrated Optics","volume":"95 1","pages":"112040L - 112040L-6"},"PeriodicalIF":2.3000,"publicationDate":"2019-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fiber and Integrated Optics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/12.2539513","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
This work presents an investigation on UV radiation on conductive copolymer regio-regular poly(3-hexyltiophene) (rr- P3HT) and its mixture with zinc oxide nanomaterial as an organic-inorganic blend, which was used as a sensing layer for organic thin film transistor or chemoresistor for gas sensing. Morphology like sample roughness, zinc oxide particles distribution and electrical properties were measured of obtained thin film deposited on TFT substrate using airbrush method. The study shows that there is a significant influence on operating parameters of OTFT by the irradiation of UV light. Given results shows the possibility of using such polymer blend in the implementation of gas sensing applications.
期刊介绍:
Fiber and Integrated Optics , now incorporating the International Journal of Optoelectronics, is an international bimonthly journal that disseminates significant developments and in-depth surveys in the fields of fiber and integrated optics. The journal is unique in bridging the major disciplines relevant to optical fibers and electro-optical devices. This results in a balanced presentation of basic research, systems applications, and economics. For more than a decade, Fiber and Integrated Optics has been a valuable forum for scientists, engineers, manufacturers, and the business community to exchange and discuss techno-economic advances in the field.