A Bridge Neural Network-Based Optical-SAR Image Joint Intelligent Interpretation Framework

IF 0.5 4区 工程技术 Q4 ENGINEERING, AEROSPACE 中国空间科学技术 Pub Date : 2021-01-01 DOI:10.34133/2021/9841456
Meiyu Huang, Yao Xu, Lixin Qian, Weili Shi, Yaqin Zhang, Wei Bao, Nan Wang, Xuejiao Liu, Xueshuang Xiang
{"title":"A Bridge Neural Network-Based Optical-SAR Image Joint Intelligent Interpretation Framework","authors":"Meiyu Huang, Yao Xu, Lixin Qian, Weili Shi, Yaqin Zhang, Wei Bao, Nan Wang, Xuejiao Liu, Xueshuang Xiang","doi":"10.34133/2021/9841456","DOIUrl":null,"url":null,"abstract":"The current interpretation technology of remote sensing images is mainly focused on single-modal data, which cannot fully utilize the complementary and correlated information of multimodal data with heterogeneous characteristics, especially for synthetic aperture radar (SAR) data and optical imagery. To solve this problem, we propose a bridge neural network- (BNN-) based optical-SAR image joint intelligent interpretation framework, optimizing the feature correlation between optical and SAR images through optical-SAR matching tasks. It adopts BNN to effectively improve the capability of common feature extraction of optical and SAR images and thus improving the accuracy and application scenarios of specific intelligent interpretation tasks for optical-SAR/SAR/optical images. Specifically, BNN projects optical and SAR images into a common feature space and mines their correlation through pair matching. Further, to deeply exploit the correlation between optical and SAR images and ensure the great representation learning ability of BNN, we build the QXS-SAROPT dataset containing 20,000 pairs of perfectly aligned optical-SAR image patches with diverse scenes of high resolutions. Experimental results on optical-to-SAR crossmodal object detection demonstrate the effectiveness and superiority of our framework. In particular, based on the QXS-SAROPT dataset, our framework can achieve up to 96% high accuracy on four benchmark SAR ship detection datasets.","PeriodicalId":44234,"journal":{"name":"中国空间科学技术","volume":"22 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国空间科学技术","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.34133/2021/9841456","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 17

Abstract

The current interpretation technology of remote sensing images is mainly focused on single-modal data, which cannot fully utilize the complementary and correlated information of multimodal data with heterogeneous characteristics, especially for synthetic aperture radar (SAR) data and optical imagery. To solve this problem, we propose a bridge neural network- (BNN-) based optical-SAR image joint intelligent interpretation framework, optimizing the feature correlation between optical and SAR images through optical-SAR matching tasks. It adopts BNN to effectively improve the capability of common feature extraction of optical and SAR images and thus improving the accuracy and application scenarios of specific intelligent interpretation tasks for optical-SAR/SAR/optical images. Specifically, BNN projects optical and SAR images into a common feature space and mines their correlation through pair matching. Further, to deeply exploit the correlation between optical and SAR images and ensure the great representation learning ability of BNN, we build the QXS-SAROPT dataset containing 20,000 pairs of perfectly aligned optical-SAR image patches with diverse scenes of high resolutions. Experimental results on optical-to-SAR crossmodal object detection demonstrate the effectiveness and superiority of our framework. In particular, based on the QXS-SAROPT dataset, our framework can achieve up to 96% high accuracy on four benchmark SAR ship detection datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于桥式神经网络的光学- sar图像联合智能解译框架
目前的遥感图像解译技术主要集中在单模态数据上,不能充分利用具有异构特征的多模态数据的互补和相关信息,特别是合成孔径雷达(SAR)数据和光学图像。为了解决这一问题,我们提出了一种基于桥式神经网络(BNN)的光学-SAR图像联合智能解译框架,通过光学-SAR匹配任务优化光学图像与SAR图像之间的特征相关性。采用BNN有效提高了光学和SAR图像的共同特征提取能力,从而提高了光学-SAR/SAR/光学图像特定智能解译任务的精度和应用场景。具体来说,BNN将光学图像和SAR图像投影到一个共同的特征空间中,并通过对匹配挖掘它们之间的相关性。此外,为了深入挖掘光学图像与SAR图像之间的相关性,并确保BNN具有良好的表征学习能力,我们构建了包含20,000对高分辨率不同场景的完美对齐光学-SAR图像块的QXS-SAROPT数据集。光学- sar交叉模态目标检测实验结果验证了该框架的有效性和优越性。特别是,基于QXS-SAROPT数据集,我们的框架可以在四个基准SAR船舶检测数据集上实现高达96%的高精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
中国空间科学技术
中国空间科学技术 ENGINEERING, AEROSPACE-
CiteScore
1.80
自引率
66.70%
发文量
3141
期刊介绍:
期刊最新文献
Evaluation of Application Effectiveness on Ocean Salinity Satellite RFI Detection Algorithms Safety design for China space station Orbital interception pursuit strategy for random evasion using deep reinforcement learning Integration of Communication and Navigation Technologies Towards LEO-Enabled 6G Networks: A Survey Accuracy Evaluation of Marginalized Unscented Kalman Filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1