Surface-Dependent Stress-Corrosion Cracking in Ni-Rich Layered Oxide Cathodes

Weifeng Wei, Zhengping Ding, Cheng Chen, Chenggong Yang, Bo Han, Lei Xiao, C. Liang, P. Gao, Kyeongjae Cho
{"title":"Surface-Dependent Stress-Corrosion Cracking in Ni-Rich Layered Oxide Cathodes","authors":"Weifeng Wei, Zhengping Ding, Cheng Chen, Chenggong Yang, Bo Han, Lei Xiao, C. Liang, P. Gao, Kyeongjae Cho","doi":"10.2139/ssrn.3680384","DOIUrl":null,"url":null,"abstract":"Structural degradation is the principal driving force for rapid voltage decay and capacity fading of Ni-rich layered oxide (NLO) cathode materials upon cycling, but its working mechanism is not yet fully elucidated. Here we apply multi-scale electron microscopy/spectroscopy techniques and theoretical calculations on both polycrystalline and single-crystal NLOs, and describe their structural evolution upon cycling. We discover that both the intergranular and intragranular cracks initiate along polar (001) basal plane due to its large elastic anisotropy upon cycling and surface structure evolution and transition metal dissolution occur on nonpolar (104) fresh surface. With this surface-dependent stress-corrosion coupling effect, severe intergranular cracking that accumulates within the polycrystalline NLO aggregates accounts mostly for the fast voltage decay and capacity fading, whereas minor intragranular cracking and less surface damage lead to substantial improvements on cyclability and reversible capacity of single-crystal NLOs. A universal understanding of the surface-dependent degradation in both polycrystalline and single-crystal NLOs provides clues on designing new cathode materials with high energy density and long cycle life through grain-boundary engineering.","PeriodicalId":18300,"journal":{"name":"MatSciRN: Other Materials Processing & Manufacturing (Topic)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MatSciRN: Other Materials Processing & Manufacturing (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3680384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Structural degradation is the principal driving force for rapid voltage decay and capacity fading of Ni-rich layered oxide (NLO) cathode materials upon cycling, but its working mechanism is not yet fully elucidated. Here we apply multi-scale electron microscopy/spectroscopy techniques and theoretical calculations on both polycrystalline and single-crystal NLOs, and describe their structural evolution upon cycling. We discover that both the intergranular and intragranular cracks initiate along polar (001) basal plane due to its large elastic anisotropy upon cycling and surface structure evolution and transition metal dissolution occur on nonpolar (104) fresh surface. With this surface-dependent stress-corrosion coupling effect, severe intergranular cracking that accumulates within the polycrystalline NLO aggregates accounts mostly for the fast voltage decay and capacity fading, whereas minor intragranular cracking and less surface damage lead to substantial improvements on cyclability and reversible capacity of single-crystal NLOs. A universal understanding of the surface-dependent degradation in both polycrystalline and single-crystal NLOs provides clues on designing new cathode materials with high energy density and long cycle life through grain-boundary engineering.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
富镍层状氧化物阴极表面应力腐蚀开裂研究
结构降解是富镍层状氧化物(NLO)正极材料在循环过程中快速电压衰减和容量衰减的主要驱动力,但其作用机制尚未完全阐明。本文应用多尺度电子显微镜/光谱学技术和理论计算对多晶和单晶NLOs进行了研究,并描述了它们在循环过程中的结构演变。我们发现,由于极性(001)基面在循环过程中具有较大的弹性各向异性,沿基面萌生晶间和晶内裂纹,而非极性(104)新表面则发生了表面结构演化和过渡金属溶解。在这种表面依赖的应力腐蚀耦合效应下,多晶NLO聚集体内部积累的严重晶间裂纹是导致电压衰减和容量衰减的主要原因,而较小的晶内裂纹和较少的表面损伤则导致单晶NLO的循环性和可逆能力的显著提高。对多晶和单晶NLOs表面依赖性降解的普遍认识,为通过晶界工程设计高能量密度、长循环寿命的新型正极材料提供了线索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Creating a Methodology to Train Manufacturing SMEs: The Lift Europe Case Scenario-based Simulation for Energy Optimization in Learning Factory Environments Rod Eutectic Growth of Al-Al 3Sc in Al-2 Wt. % Sc Undercooled Melt Zinc Manganate/Manganic Oxide Bi-Component Nanorod as Excellent Cathode for Zinc-Ion Battery Designing an Improved Structure of the Tool for Repairing the Brake Pipe Connectors in Vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1