{"title":"GaN-HEMT-based three level T-type NPC inverter using reverse-conducting mode in rectifying","authors":"Hiroki Kurumatani, S. Katsura","doi":"10.1109/ISIE.2017.8001548","DOIUrl":null,"url":null,"abstract":"The paper presents a design method of a gallium-nitride high-electron-mobility-transistor (GaN-HEMT) based three level T-type neutral-point-clamped (NPC) inverter using a reverse-conducting mode of the GaN-HEMT. The GaN-HEMT provides high-frequency switching speed and the T-type inverter supports such switching by decreasing conduction loss and heat dissipation. The GaN-HEMT has two operation mode, an enhancement mode and the reverse-conducting mode. In the enhancement mode, resistance on the GaN-HEMT is controlled by gate-source voltage. The reverse-conducting mode appears when gate-source voltage is less than zero. This characteristic provides advantage on design of the T-type NPC inverter. Then, the paper shows that a normally-off inverter is easily attained by using the reverse-conducting mode. Verification of the designed-circuit is conducted by some validation.","PeriodicalId":6597,"journal":{"name":"2017 IEEE 26th International Symposium on Industrial Electronics (ISIE)","volume":"36 1","pages":"1941-1946"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 26th International Symposium on Industrial Electronics (ISIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIE.2017.8001548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
The paper presents a design method of a gallium-nitride high-electron-mobility-transistor (GaN-HEMT) based three level T-type neutral-point-clamped (NPC) inverter using a reverse-conducting mode of the GaN-HEMT. The GaN-HEMT provides high-frequency switching speed and the T-type inverter supports such switching by decreasing conduction loss and heat dissipation. The GaN-HEMT has two operation mode, an enhancement mode and the reverse-conducting mode. In the enhancement mode, resistance on the GaN-HEMT is controlled by gate-source voltage. The reverse-conducting mode appears when gate-source voltage is less than zero. This characteristic provides advantage on design of the T-type NPC inverter. Then, the paper shows that a normally-off inverter is easily attained by using the reverse-conducting mode. Verification of the designed-circuit is conducted by some validation.