Nanoclay/organic filler-reinforced polymeric hybrid composites as promising materials for building, automotive, and construction applications- a state-of-the-art review
{"title":"Nanoclay/organic filler-reinforced polymeric hybrid composites as promising materials for building, automotive, and construction applications- a state-of-the-art review","authors":"Lucky Ogheneakpobo Ejeta","doi":"10.1080/09276440.2023.2220217","DOIUrl":null,"url":null,"abstract":"ABSTRACT Several research articles in the field of nanocomposite have revealed that organic fillers can be used as reinforcing agents for plastic materials in hybrid material production. Advancement in multifunctional materials is anticipated to grow with the advent of lightweight, low-cost, and sustainable materials with improved mechanical, fire retardancy, water resistance, and higher barrier properties. As reported in the literature, these performance properties could be obtained by reinforcing nanoclay/organic filler in polymeric matrices. In this report, the pretreatment techniques for overcoming the challenges of hybrid composite production are discussed in detail. The bonding mechanisms between the nanoclay and plastic materials are explained. The study gives an overview of the recent progress on multifunctional hybrid materials made using nanoclay/organic particulate fillers as reinforcements for polymer matrices intended for use in the automotive, building, and construction industries. GRAPHICAL ABSTRACT","PeriodicalId":10653,"journal":{"name":"Composite Interfaces","volume":"263 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09276440.2023.2220217","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACT Several research articles in the field of nanocomposite have revealed that organic fillers can be used as reinforcing agents for plastic materials in hybrid material production. Advancement in multifunctional materials is anticipated to grow with the advent of lightweight, low-cost, and sustainable materials with improved mechanical, fire retardancy, water resistance, and higher barrier properties. As reported in the literature, these performance properties could be obtained by reinforcing nanoclay/organic filler in polymeric matrices. In this report, the pretreatment techniques for overcoming the challenges of hybrid composite production are discussed in detail. The bonding mechanisms between the nanoclay and plastic materials are explained. The study gives an overview of the recent progress on multifunctional hybrid materials made using nanoclay/organic particulate fillers as reinforcements for polymer matrices intended for use in the automotive, building, and construction industries. GRAPHICAL ABSTRACT
期刊介绍:
Composite Interfaces publishes interdisciplinary scientific and engineering research articles on composite interfaces/interphases and their related phenomena. Presenting new concepts for the fundamental understanding of composite interface study, the journal balances interest in chemistry, physical properties, mechanical properties, molecular structures, characterization techniques and theories.
Composite Interfaces covers a wide range of topics including - but not restricted to:
-surface treatment of reinforcing fibers and fillers-
effect of interface structure on mechanical properties, physical properties, curing and rheology-
coupling agents-
synthesis of matrices designed to promote adhesion-
molecular and atomic characterization of interfaces-
interfacial morphology-
dynamic mechanical study of interphases-
interfacial compatibilization-
adsorption-
tribology-
composites with organic, inorganic and metallic materials-
composites applied to aerospace, automotive, appliances, electronics, construction, marine, optical and biomedical fields