Root-cause analysis of process-data quality problems

IF 1.7 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Business Analytics Pub Date : 2021-06-18 DOI:10.1080/2573234X.2021.1947751
R. Andrews, Fahame F. Emamjome, A. T. Ter Hofstede, H. Reijers
{"title":"Root-cause analysis of process-data quality problems","authors":"R. Andrews, Fahame F. Emamjome, A. T. Ter Hofstede, H. Reijers","doi":"10.1080/2573234X.2021.1947751","DOIUrl":null,"url":null,"abstract":"ABSTRACT Process mining provides analytical tools and methods which can distil insights about process behaviour from big process-related data. Yet challenges relating to the impact of poor quality data on event logs, the input to process mining analyses, remain. Despite researchers raising concerns about event log data quality, event log preparation is, in practice, generally handled mechanistically, focusing on fixing symptoms rather than on uncovering the root causes of event log data quality issues. To address this, we introduce the Odigos (Greek for “guide”) framework. Based on semiotics and Peircean abductive reasoning, the Odigos framework facilitates an informed way of dealing with data quality issues in event logs. Odigos supports both prognostic (foreshadowing potential quality issues) and diagnostic (identifying root causes of discovered quality issues) approaches. We examine in depth how the framework supports a detailed root-cause analysis of a well-known collection of event log imperfection patterns.","PeriodicalId":36417,"journal":{"name":"Journal of Business Analytics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2021-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Business Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/2573234X.2021.1947751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 4

Abstract

ABSTRACT Process mining provides analytical tools and methods which can distil insights about process behaviour from big process-related data. Yet challenges relating to the impact of poor quality data on event logs, the input to process mining analyses, remain. Despite researchers raising concerns about event log data quality, event log preparation is, in practice, generally handled mechanistically, focusing on fixing symptoms rather than on uncovering the root causes of event log data quality issues. To address this, we introduce the Odigos (Greek for “guide”) framework. Based on semiotics and Peircean abductive reasoning, the Odigos framework facilitates an informed way of dealing with data quality issues in event logs. Odigos supports both prognostic (foreshadowing potential quality issues) and diagnostic (identifying root causes of discovered quality issues) approaches. We examine in depth how the framework supports a detailed root-cause analysis of a well-known collection of event log imperfection patterns.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
工艺数据质量问题的根本原因分析
过程挖掘提供了分析工具和方法,可以从与过程相关的大数据中提取有关过程行为的见解。然而,与低质量数据对事件日志(流程挖掘分析的输入)的影响相关的挑战仍然存在。尽管研究人员提出了对事件日志数据质量的担忧,但在实践中,事件日志准备通常是机械地处理的,侧重于修复症状,而不是发现事件日志数据质量问题的根本原因。为了解决这个问题,我们引入了Odigos(希腊语中的“指南”)框架。基于符号学和Peircean溯因推理,Odigos框架为处理事件日志中的数据质量问题提供了一种明智的方式。Odigos支持预测(预示潜在的质量问题)和诊断(识别发现的质量问题的根本原因)方法。我们将深入研究该框架如何支持对一组众所周知的事件日志缺陷模式进行详细的根本原因分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Business Analytics
Journal of Business Analytics Business, Management and Accounting-Management Information Systems
CiteScore
2.50
自引率
0.00%
发文量
13
期刊最新文献
Decoding technological frames: a qualitative inquiry into business analytics perspectives Maximising competitive advantage: the role of strategic business analytics framework in business strategies Data Analytics for Societal Challenges: Examining Student Participation in the National School Lunch Program Exploring the relationship between YouTube video optimisation practices and video rankings for online marketing: a machine learning approach The era of business analytics: identifying and ranking the differences between business intelligence and data science from practitioners’ perspective using the Delphi method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1