A Gated Content-Oriented Residual Dense Network for Hyperspectral Image Super-Resolution

Remote. Sens. Pub Date : 2023-07-02 DOI:10.3390/rs15133378
Jing Hu, Tingting Li, Minghua Zhao, Fei Wang, Jiawei Ning
{"title":"A Gated Content-Oriented Residual Dense Network for Hyperspectral Image Super-Resolution","authors":"Jing Hu, Tingting Li, Minghua Zhao, Fei Wang, Jiawei Ning","doi":"10.3390/rs15133378","DOIUrl":null,"url":null,"abstract":"Limited by the existing imagery sensors, a hyperspectral image (HSI) is characterized by its high spectral resolution but low spatial resolution. HSI super-resolution (SR) aims to enhance the spatial resolution of the HSIs without modifying the equipment and has become a hot issue for HSI processing. In this paper, inspired by two important observations, a gated content-oriented residual dense network (GCoRDN) is designed for the HSI SR. To be specific, based on the observation that the structure and texture exhibit different sensitivities to the spatial degradation, a content-oriented network with two branches is designed. Meanwhile, a weight-sharing strategy is merged in the network to preserve the consistency in the structure and the texture. In addition, based on the observation of the super-resolved results, a gating mechanism is applied as a form of post-processing to further enhance the SR performance. Experimental results and data analysis on both ground-based HSIs and airborne HSIs have demonstrated the effectiveness of the proposed method.","PeriodicalId":20944,"journal":{"name":"Remote. Sens.","volume":"14 1","pages":"3378"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote. Sens.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/rs15133378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Limited by the existing imagery sensors, a hyperspectral image (HSI) is characterized by its high spectral resolution but low spatial resolution. HSI super-resolution (SR) aims to enhance the spatial resolution of the HSIs without modifying the equipment and has become a hot issue for HSI processing. In this paper, inspired by two important observations, a gated content-oriented residual dense network (GCoRDN) is designed for the HSI SR. To be specific, based on the observation that the structure and texture exhibit different sensitivities to the spatial degradation, a content-oriented network with two branches is designed. Meanwhile, a weight-sharing strategy is merged in the network to preserve the consistency in the structure and the texture. In addition, based on the observation of the super-resolved results, a gating mechanism is applied as a form of post-processing to further enhance the SR performance. Experimental results and data analysis on both ground-based HSIs and airborne HSIs have demonstrated the effectiveness of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向高光谱图像超分辨率的门控残差密集网络
受现有图像传感器的限制,高光谱图像具有光谱分辨率高、空间分辨率低的特点。HSI超分辨率(SR)是在不改变HSI设备的情况下提高HSI的空间分辨率,已成为HSI处理的热点问题。本文在两个重要观测结果的启发下,设计了面向HSI sr的门控面向内容残差密集网络(GCoRDN)。具体而言,基于结构和纹理对空间退化的不同敏感性,设计了具有两个分支的面向内容网络。同时,在网络中引入权值共享策略,以保持网络结构和纹理的一致性。此外,基于对超分辨结果的观察,采用门控机制作为后处理的一种形式来进一步提高SR性能。地面和机载hsi的实验结果和数据分析都证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influences of Different Factors on Gravity Wave Activity in the Lower Stratosphere of the Indian Region Estimating Sugarcane Aboveground Biomass and Carbon Stock Using the Combined Time Series of Sentinel Data with Machine Learning Algorithms Dynamic Screening Strategy Based on Feature Graphs for UAV Object and Group Re-Identification The Expanding of Proglacial Lake Amplified the Frontal Ablation of Jiongpu Co Glacier since 1985 Investigation of Light-Scattering Properties of Non-Spherical Sea Salt Aerosol Particles at Varying Levels of Relative Humidity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1