Hierarchihal Bayesian parameter estimation for HIV dynamic models

Mokaedi V. Lekgari
{"title":"Hierarchihal Bayesian parameter estimation for HIV dynamic models","authors":"Mokaedi V. Lekgari","doi":"10.12988/ASB.2015.517","DOIUrl":null,"url":null,"abstract":"Most studies on parameter estimation for HIV dynamic models have ignored pre-treatment viral load data hence utilizing only post-treatment viral load data. In this study we utilize pre-treatment viral load data to estimate parameters of the HIV dynamic model in the absence of therapy. By employing hierarchical Bayesian parameter estimation approach, we were able to get reasonably robust estimates of the model parameters. Using simulated data, the parameter estimation was done at both the individual and population levels with the implementation carried out via Markov Chain Monte Carlo methods.","PeriodicalId":7194,"journal":{"name":"Advanced Studies in Biology","volume":"90 1","pages":"217-232"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Studies in Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12988/ASB.2015.517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Most studies on parameter estimation for HIV dynamic models have ignored pre-treatment viral load data hence utilizing only post-treatment viral load data. In this study we utilize pre-treatment viral load data to estimate parameters of the HIV dynamic model in the absence of therapy. By employing hierarchical Bayesian parameter estimation approach, we were able to get reasonably robust estimates of the model parameters. Using simulated data, the parameter estimation was done at both the individual and population levels with the implementation carried out via Markov Chain Monte Carlo methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HIV动态模型的层次贝叶斯参数估计
大多数关于HIV动态模型参数估计的研究都忽略了治疗前的病毒载量数据,因此只使用治疗后的病毒载量数据。在这项研究中,我们利用治疗前的病毒载量数据来估计在没有治疗的情况下HIV动态模型的参数。通过采用层次贝叶斯参数估计方法,我们能够得到合理的模型参数鲁棒估计。利用模拟数据,在个体和总体水平上进行参数估计,并通过马尔可夫链蒙特卡罗方法实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of iron oxide nanoparticles on the growth of maize sprouts cultivated under drought stress and on the activity dynamics of NADP-ISDH enzyme The evaluation of the potato collection samples according to some physiological indicators and the choosing of the primary donors for the selection Influence of sodium chloride on physiological, biochemical and yield indicators of wheat and maize genotypes Initial assessment of distribution patterns of pitcher plant (Nephentes Bellii) in northern Mindanao, Philippines Destruction of total organic matter and the primary product of phytoplankton in the main reservoirs of Azerbaijan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1