Local Grouped Invariant Order Pattern for Grayscale-Inversion and Rotation Invariant Texture Classification

Yankai Huang, Tiecheng Song, Shuang Li, Yuanjing Han
{"title":"Local Grouped Invariant Order Pattern for Grayscale-Inversion and Rotation Invariant Texture Classification","authors":"Yankai Huang, Tiecheng Song, Shuang Li, Yuanjing Han","doi":"10.1109/ICPR48806.2021.9412743","DOIUrl":null,"url":null,"abstract":"Local binary pattern (LBP) based descriptors have shown effectiveness for texture classification. However, most of them encode the intensity relationships between neighboring pixels and a central pixel into binary forms, thereby failing to capture the complete ordering information among neighbors. Several methods have explored intensity order information for feature description, but they do not address the grayscale-inversion problem. In this paper, we propose an image descriptor called local grouped invariant order pattern (LGIOP) for grayscale-inversion and rotation invariant texture classification. Our LGIOP is a histogram representation which jointly encodes neighboring order information and central pixels. In particular, two new order encoding methods, i.e., intensity order encoding and distance order encoding, are proposed to describe the neighboring relationships. These two order encoding methods are not only complementary but also invariant to grayscale-inversion and rotation changes. Experiments for texture classification demonstrate that the proposed LGIOP descriptor is robust to (linear or nonlinear) grayscale inversion and image rotation.","PeriodicalId":6783,"journal":{"name":"2020 25th International Conference on Pattern Recognition (ICPR)","volume":"2015 1","pages":"6632-6639"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 25th International Conference on Pattern Recognition (ICPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR48806.2021.9412743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Local binary pattern (LBP) based descriptors have shown effectiveness for texture classification. However, most of them encode the intensity relationships between neighboring pixels and a central pixel into binary forms, thereby failing to capture the complete ordering information among neighbors. Several methods have explored intensity order information for feature description, but they do not address the grayscale-inversion problem. In this paper, we propose an image descriptor called local grouped invariant order pattern (LGIOP) for grayscale-inversion and rotation invariant texture classification. Our LGIOP is a histogram representation which jointly encodes neighboring order information and central pixels. In particular, two new order encoding methods, i.e., intensity order encoding and distance order encoding, are proposed to describe the neighboring relationships. These two order encoding methods are not only complementary but also invariant to grayscale-inversion and rotation changes. Experiments for texture classification demonstrate that the proposed LGIOP descriptor is robust to (linear or nonlinear) grayscale inversion and image rotation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
灰度反演和旋转不变纹理分类的局部分组不变顺序模式
基于局部二值模式(LBP)的描述符在纹理分类中表现出了良好的效果。然而,它们大多将相邻像素与中心像素之间的强度关系编码为二值形式,因此无法捕获相邻像素之间完整的顺序信息。有几种方法探索了特征描述的强度顺序信息,但它们没有解决灰度反演问题。本文提出了一种局部分组不变顺序模式(LGIOP)图像描述符,用于灰度反演和旋转不变纹理分类。我们的LGIOP是一个直方图表示,它联合编码相邻的顺序信息和中心像素。特别提出了两种新的阶数编码方法,即强度阶数编码和距离阶数编码来描述相邻关系。这两种编码方法不仅互补,而且对灰度反转和旋转变化具有不变性。纹理分类实验表明,所提出的LGIOP描述符对(线性或非线性)灰度反演和图像旋转具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Trajectory representation learning for Multi-Task NMRDP planning Semantic Segmentation Refinement Using Entropy and Boundary-guided Monte Carlo Sampling and Directed Regional Search A Randomized Algorithm for Sparse Recovery An Empirical Bayes Approach to Topic Modeling To Honor our Heroes: Analysis of the Obituaries of Australians Killed in Action in WWI and WWII
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1