Hybrid analysis and modeling, eclecticism, and multifidelity computing toward digital twin revolution

Q1 Mathematics GAMM Mitteilungen Pub Date : 2021-05-28 DOI:10.1002/gamm.202100007
Omer San, Adil Rasheed, Trond Kvamsdal
{"title":"Hybrid analysis and modeling, eclecticism, and multifidelity computing toward digital twin revolution","authors":"Omer San,&nbsp;Adil Rasheed,&nbsp;Trond Kvamsdal","doi":"10.1002/gamm.202100007","DOIUrl":null,"url":null,"abstract":"<p>Most modeling approaches lie in either of the two categories: physics-based or data-driven. Recently, a third approach which is a combination of these deterministic and statistical models is emerging for scientific applications. To leverage these developments, our aim in this perspective paper is centered around exploring numerous principle concepts to address the challenges of (i) trustworthiness and generalizability in developing data-driven models to shed light on understanding the fundamental trade-offs in their accuracy and efficiency and (ii) seamless integration of interface learning and multifidelity coupling approaches that transfer and represent information between different entities, particularly when different scales are governed by different physics, each operating on a different level of abstraction. Addressing these challenges could enable the revolution of digital twin technologies for scientific and engineering applications.</p>","PeriodicalId":53634,"journal":{"name":"GAMM Mitteilungen","volume":"44 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/gamm.202100007","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GAMM Mitteilungen","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gamm.202100007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 26

Abstract

Most modeling approaches lie in either of the two categories: physics-based or data-driven. Recently, a third approach which is a combination of these deterministic and statistical models is emerging for scientific applications. To leverage these developments, our aim in this perspective paper is centered around exploring numerous principle concepts to address the challenges of (i) trustworthiness and generalizability in developing data-driven models to shed light on understanding the fundamental trade-offs in their accuracy and efficiency and (ii) seamless integration of interface learning and multifidelity coupling approaches that transfer and represent information between different entities, particularly when different scales are governed by different physics, each operating on a different level of abstraction. Addressing these challenges could enable the revolution of digital twin technologies for scientific and engineering applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合分析和建模,折衷主义和多保真计算走向数字孪生革命
大多数建模方法属于两类:基于物理的或数据驱动的。最近,第三种方法,即这些确定性和统计模型的结合,正在出现在科学应用中。为了利用这些发展,我们在这篇观点论文中的目标是围绕探索许多原则概念来解决以下挑战:(i)开发数据驱动模型的可信度和通用性,以阐明理解其准确性和效率的基本权衡;(ii)接口学习和多保真耦合方法的无缝集成,在不同实体之间传递和表示信息;特别是当不同的尺度由不同的物理控制时,每一个都在不同的抽象层次上运作。解决这些挑战可以为科学和工程应用带来数字孪生技术的革命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
GAMM Mitteilungen
GAMM Mitteilungen Mathematics-Applied Mathematics
CiteScore
8.80
自引率
0.00%
发文量
23
期刊最新文献
Issue Information Regularizations of forward-backward parabolic PDEs Parallel two-scale finite element implementation of a system with varying microstructure Issue Information Low Mach number limit of a diffuse interface model for two-phase flows of compressible viscous fluids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1