Efficient Algorithms for Basket Default Swap Pricing with Multivariate Archimedean Copulas

IF 0.4 4区 经济学 Q4 BUSINESS, FINANCE Journal of Derivatives Pub Date : 2009-06-04 DOI:10.2139/ssrn.1414111
G. Choe, Hyun Jin Jang
{"title":"Efficient Algorithms for Basket Default Swap Pricing with Multivariate Archimedean Copulas","authors":"G. Choe, Hyun Jin Jang","doi":"10.2139/ssrn.1414111","DOIUrl":null,"url":null,"abstract":"We introduce a new importance sampling method for pricing basket default swaps employing exchangeable Archimedean copulas and nested Gumbel copulas. We establish more realistic dependence structures than existing copula models for credit risks in the underlying portfolio, and propose an appropriate density for importance sampling by analyzing multivariate Archimedean copulas. To justify efficiency and accuracy of the proposed algorithms, we present numerical examples and compare them with the crude Monte Carlo simulation, and finally show that our proposed estimators produce considerably smaller variances.","PeriodicalId":40006,"journal":{"name":"Journal of Derivatives","volume":"2010 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2009-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Derivatives","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.2139/ssrn.1414111","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 20

Abstract

We introduce a new importance sampling method for pricing basket default swaps employing exchangeable Archimedean copulas and nested Gumbel copulas. We establish more realistic dependence structures than existing copula models for credit risks in the underlying portfolio, and propose an appropriate density for importance sampling by analyzing multivariate Archimedean copulas. To justify efficiency and accuracy of the proposed algorithms, we present numerical examples and compare them with the crude Monte Carlo simulation, and finally show that our proposed estimators produce considerably smaller variances.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多元阿基米德copula的篮子违约掉期定价的高效算法
利用可交换的阿基米德copula和嵌套的Gumbel copula,提出了一种新的一揽子违约互换定价的重要抽样方法。我们建立了比现有的投资组合信用风险关联模型更真实的依赖结构,并通过分析多元阿基米德关联模型提出了合适的重要抽样密度。为了证明所提出算法的效率和准确性,我们给出了数值例子,并将它们与粗略的蒙特卡罗模拟进行了比较,最后表明我们提出的估计产生了相当小的方差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Derivatives
Journal of Derivatives Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
1.30
自引率
14.30%
发文量
35
期刊介绍: The Journal of Derivatives (JOD) is the leading analytical journal on derivatives, providing detailed analyses of theoretical models and how they are used in practice. JOD gives you results-oriented analysis and provides full treatment of mathematical and statistical information on derivatives products and techniques. JOD includes articles about: •The latest valuation and hedging models for derivative instruments and securities •New tools and models for financial risk management •How to apply academic derivatives theory and research to real-world problems •Illustration and rigorous analysis of key innovations in derivative securities and derivative markets
期刊最新文献
VIX Option Pricing for Non-Parameter Heston Stochastic Local Volatility Model Beyond Basel 4: Integrating Over-the-Counter Derivatives Risk Capital Requirements Commodity ETF Arbitrage: Futures-Backed versus Physical-Backed ETFs Efficient Implementation of Tree-Based Option Pricing and Hedging Algorithms under GARCH Models Measuring Information Flows in Option Markets: A Relative Entropy Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1