{"title":"MedVis: A Real-Time Immersive Visualization Environment for the Exploration of Medical Volumetric Data","authors":"Rui Shen, P. Boulanger, M. Noga","doi":"10.1109/MEDIVIS.2008.10","DOIUrl":null,"url":null,"abstract":"This paper describes the Medical Visualizer, a real-time visualization system for analyzing medical volumetric data in various virtual environments, such as autostereoscopic displays, dual-projector screens and immersive environments such as the CAVE. Direct volume rendering is used for visualizing the details of medical volumetric data sets without intermediate geometric representations. By interactively manipulating the color and transparency functions through the friendly user interface, radiologists can either inspect the data set as a whole or focus on a specific region. In our system, 3D texture hardware is employed to accelerate the rendering process. The system is designed to be platform independent, as all virtual reality functions are separated from kernel functions. Due to its modular design, our system can be easily extended to other virtual environments, and new functions can be incorporated rapidly.","PeriodicalId":51800,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering-Imaging and Visualization","volume":"7 1","pages":"63-68"},"PeriodicalIF":1.3000,"publicationDate":"2008-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering-Imaging and Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEDIVIS.2008.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 17
Abstract
This paper describes the Medical Visualizer, a real-time visualization system for analyzing medical volumetric data in various virtual environments, such as autostereoscopic displays, dual-projector screens and immersive environments such as the CAVE. Direct volume rendering is used for visualizing the details of medical volumetric data sets without intermediate geometric representations. By interactively manipulating the color and transparency functions through the friendly user interface, radiologists can either inspect the data set as a whole or focus on a specific region. In our system, 3D texture hardware is employed to accelerate the rendering process. The system is designed to be platform independent, as all virtual reality functions are separated from kernel functions. Due to its modular design, our system can be easily extended to other virtual environments, and new functions can be incorporated rapidly.
期刊介绍:
Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization is an international journal whose main goals are to promote solutions of excellence for both imaging and visualization of biomedical data, and establish links among researchers, clinicians, the medical technology sector and end-users. The journal provides a comprehensive forum for discussion of the current state-of-the-art in the scientific fields related to imaging and visualization, including, but not limited to: Applications of Imaging and Visualization Computational Bio- imaging and Visualization Computer Aided Diagnosis, Surgery, Therapy and Treatment Data Processing and Analysis Devices for Imaging and Visualization Grid and High Performance Computing for Imaging and Visualization Human Perception in Imaging and Visualization Image Processing and Analysis Image-based Geometric Modelling Imaging and Visualization in Biomechanics Imaging and Visualization in Biomedical Engineering Medical Clinics Medical Imaging and Visualization Multi-modal Imaging and Visualization Multiscale Imaging and Visualization Scientific Visualization Software Development for Imaging and Visualization Telemedicine Systems and Applications Virtual Reality Visual Data Mining and Knowledge Discovery.