Distributed shared persistent memory

Yizhou Shan, Shin-Yeh Tsai, Yiying Zhang
{"title":"Distributed shared persistent memory","authors":"Yizhou Shan, Shin-Yeh Tsai, Yiying Zhang","doi":"10.1145/3127479.3128610","DOIUrl":null,"url":null,"abstract":"Next-generation non-volatile memories (NVMs) will provide byte addressability, persistence, high density, and DRAM-like performance. They have the potential to benefit many datacenter applications. However, most previous research on NVMs has focused on using them in a single machine environment. It is still unclear how to best utilize them in distributed, datacenter environments. We introduce Distributed Shared Persistent Memory (DSPM), a new framework for using persistent memories in distributed data-center environments. DSPM provides a new abstraction that allows applications to both perform traditional memory load and store instructions and to name, share, and persist their data. We built Hotpot, a kernel-level DSPM system that provides low-latency, transparent memory accesses, data persistence, data reliability, and high availability. The key ideas of Hotpot are to integrate distributed memory caching and data replication techniques and to exploit application hints. We implemented Hotpot in the Linux kernel and demonstrated its benefits by building a distributed graph engine on Hotpot and porting a NoSQL database to Hotpot. Our evaluation shows that Hotpot outperforms a recent distributed shared memory system by 1.3× to 3.2× and a recent distributed PM-based file system by 1.5× to 3.0×.","PeriodicalId":20679,"journal":{"name":"Proceedings of the 2017 Symposium on Cloud Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"105","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 Symposium on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3127479.3128610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 105

Abstract

Next-generation non-volatile memories (NVMs) will provide byte addressability, persistence, high density, and DRAM-like performance. They have the potential to benefit many datacenter applications. However, most previous research on NVMs has focused on using them in a single machine environment. It is still unclear how to best utilize them in distributed, datacenter environments. We introduce Distributed Shared Persistent Memory (DSPM), a new framework for using persistent memories in distributed data-center environments. DSPM provides a new abstraction that allows applications to both perform traditional memory load and store instructions and to name, share, and persist their data. We built Hotpot, a kernel-level DSPM system that provides low-latency, transparent memory accesses, data persistence, data reliability, and high availability. The key ideas of Hotpot are to integrate distributed memory caching and data replication techniques and to exploit application hints. We implemented Hotpot in the Linux kernel and demonstrated its benefits by building a distributed graph engine on Hotpot and porting a NoSQL database to Hotpot. Our evaluation shows that Hotpot outperforms a recent distributed shared memory system by 1.3× to 3.2× and a recent distributed PM-based file system by 1.5× to 3.0×.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分布式共享持久内存
下一代非易失性存储器(nvm)将提供字节可寻址性、持久性、高密度和类似dram的性能。它们有可能使许多数据中心应用程序受益。然而,之前大多数关于nvm的研究都集中在单机环境中使用它们。目前还不清楚如何在分布式数据中心环境中最好地利用它们。我们介绍了分布式共享持久内存(DSPM),这是一种在分布式数据中心环境中使用持久内存的新框架。DSPM提供了一种新的抽象,允许应用程序执行传统的内存加载和存储指令,并命名、共享和持久化它们的数据。我们构建了Hotpot,一个内核级的DSPM系统,它提供了低延迟、透明的内存访问、数据持久性、数据可靠性和高可用性。Hotpot的核心思想是集成分布式内存缓存和数据复制技术,并利用应用程序提示。我们在Linux内核中实现了火锅,并通过在火锅上构建分布式图引擎和移植NoSQL数据库来展示它的优势。我们的评估表明,Hotpot的性能比最近的分布式共享内存系统高出1.3到3.2倍,比最近的基于分布式pm的文件系统高出1.5到3.0倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Janus: supporting heterogeneous power management in virtualized environments On-demand virtualization for live migration in bare metal cloud Preserving I/O prioritization in virtualized OSes To edge or not to edge? Indy: a software system for the dense cloud
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1