D. Menzi, S. Weihe, J. A. Anderson, M. Kasper, J. Huber, J. Kolar
{"title":"Novel S-Link Enabling Ultra-Compact and Ultra-Efficient Three-Phase and Single-Phase Operable On-Board EV Chargers","authors":"D. Menzi, S. Weihe, J. A. Anderson, M. Kasper, J. Huber, J. Kolar","doi":"10.1109/COMPEL52896.2023.10221163","DOIUrl":null,"url":null,"abstract":"On-Board Chargers (OBCs) comprising an ac-dc front-end and a subsequent isolated dc-dc converter stage represent a crucial component of Electric Vehicles (EVs), and must be able to charge the EV battery from both, a three-phase mains and a single-phase mains. Further, a lightweight and compact realization of the OBC is key in mobile applications. This requirement for high gravimetric and volumetric power density is often hindered by the large (electrolytic) dc-link capacitor required to buffer the power pulsation at twice the mains frequency in single-phase operation, which can be omitted by employing an active Power Pulsation Buffer (PPB) circuit allowing to minimize the overall capacitor volume. This paper proposes a novel Smart-dc-Link (S-Link) concept which improves the OBC performance by utilizing the active PPB circuitry also in three-phase operation. There, the S-Link facilitates a six-pulse dc-link voltage variation enabling a substantial switching loss reduction in the ac-dc converter front-end, while advantageously the dc output voltage can be kept constant.","PeriodicalId":55233,"journal":{"name":"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering","volume":"50 1","pages":"1-7"},"PeriodicalIF":1.0000,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/COMPEL52896.2023.10221163","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
On-Board Chargers (OBCs) comprising an ac-dc front-end and a subsequent isolated dc-dc converter stage represent a crucial component of Electric Vehicles (EVs), and must be able to charge the EV battery from both, a three-phase mains and a single-phase mains. Further, a lightweight and compact realization of the OBC is key in mobile applications. This requirement for high gravimetric and volumetric power density is often hindered by the large (electrolytic) dc-link capacitor required to buffer the power pulsation at twice the mains frequency in single-phase operation, which can be omitted by employing an active Power Pulsation Buffer (PPB) circuit allowing to minimize the overall capacitor volume. This paper proposes a novel Smart-dc-Link (S-Link) concept which improves the OBC performance by utilizing the active PPB circuitry also in three-phase operation. There, the S-Link facilitates a six-pulse dc-link voltage variation enabling a substantial switching loss reduction in the ac-dc converter front-end, while advantageously the dc output voltage can be kept constant.
期刊介绍:
COMPEL exists for the discussion and dissemination of computational and analytical methods in electrical and electronic engineering. The main emphasis of papers should be on methods and new techniques, or the application of existing techniques in a novel way. Whilst papers with immediate application to particular engineering problems are welcome, so too are papers that form a basis for further development in the area of study. A double-blind review process ensures the content''s validity and relevance.