{"title":"A Rubik's Cube Cryptosystem-based Authentication and Session Key Generation Model Driven in Blockchain Environment for IoT Security","authors":"Ankit Attkan, V. Ranga, Priyanka Ahlawat","doi":"10.1145/3586578","DOIUrl":null,"url":null,"abstract":"Over the past decade, IoT has gained huge momentum in terms of technological exploration, integration, and its various applications even after having a resource-bound architecture. It is challenging to run any high-end security protocol(s) on Edge devices. These devices are highly vulnerable toward numerous cyber-attacks. IoT network nodes need peer-to-peer security, which is possible if there exists proper mutual authentication among network devices. A secure session key needs to be established among source and destination nodes before sending the sensitive data. To generate these session keys, a strong cryptosystem is required to share parameters securely over a wireless network. In this article, we utilize a Rubik's cube puzzle-based cryptosystem to exchange parameters among peers and generate session key(s). Blockchain technology is incorporated in the proposed model to provide anonymity of token transactions, on the basis of which the network devices exchange services. A session key pool randomizer is used to avoid network probabilistic attacks. Our hybrid model is capable of generating secure session keys that can be used for mutual authentication and reliable data transferring tasks. Cyber-attacks resistance and performance results were verified using standard tools, which gave industry level promising results in terms of efficiency, light weightiness, and practical applications.","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":"2014 1","pages":"1 - 39"},"PeriodicalIF":3.5000,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3586578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1
Abstract
Over the past decade, IoT has gained huge momentum in terms of technological exploration, integration, and its various applications even after having a resource-bound architecture. It is challenging to run any high-end security protocol(s) on Edge devices. These devices are highly vulnerable toward numerous cyber-attacks. IoT network nodes need peer-to-peer security, which is possible if there exists proper mutual authentication among network devices. A secure session key needs to be established among source and destination nodes before sending the sensitive data. To generate these session keys, a strong cryptosystem is required to share parameters securely over a wireless network. In this article, we utilize a Rubik's cube puzzle-based cryptosystem to exchange parameters among peers and generate session key(s). Blockchain technology is incorporated in the proposed model to provide anonymity of token transactions, on the basis of which the network devices exchange services. A session key pool randomizer is used to avoid network probabilistic attacks. Our hybrid model is capable of generating secure session keys that can be used for mutual authentication and reliable data transferring tasks. Cyber-attacks resistance and performance results were verified using standard tools, which gave industry level promising results in terms of efficiency, light weightiness, and practical applications.