{"title":"Atmospheric aluminum from human activities","authors":"Yoshikazu Hashimoto, Yoshika Sekine, Tsunehiko Otoshi","doi":"10.1016/0957-1272(92)90005-D","DOIUrl":null,"url":null,"abstract":"<div><p>The inventory of aluminum in the atmospheric air from human activities was discussed using data from the Japanese National Air Surveillance Network. The source of atmospheric Al is considered to be mainly soil-derived particles. However, an hropogenically generated Al could also be added to airborne particulates less than 10 μm in aerodynamic diameter. Scandium, which is also found in soil dust, has a value lower than unity in enrichment factor normalized by Al. The intercept, <em>A</em> of the AlSc regression curve, (Al) = <em>A</em> + <em>B</em>(Sc), was much larger in industrial cities such as Kawasaki, Amagasaki, etc. This could be explained by the difference of elemental composition of various emission sources and the existence of excess Al added to airborne particulate samples.</p></div>","PeriodicalId":100140,"journal":{"name":"Atmospheric Environment. Part B. Urban Atmosphere","volume":"26 3","pages":"Pages 295-300"},"PeriodicalIF":0.0000,"publicationDate":"1992-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0957-1272(92)90005-D","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Environment. Part B. Urban Atmosphere","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/095712729290005D","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26
Abstract
The inventory of aluminum in the atmospheric air from human activities was discussed using data from the Japanese National Air Surveillance Network. The source of atmospheric Al is considered to be mainly soil-derived particles. However, an hropogenically generated Al could also be added to airborne particulates less than 10 μm in aerodynamic diameter. Scandium, which is also found in soil dust, has a value lower than unity in enrichment factor normalized by Al. The intercept, A of the AlSc regression curve, (Al) = A + B(Sc), was much larger in industrial cities such as Kawasaki, Amagasaki, etc. This could be explained by the difference of elemental composition of various emission sources and the existence of excess Al added to airborne particulate samples.