Variational quantum simulations of stochastic differential equations

K. Kubo, Yuya O. Nakagawa, Suguru Endo, S. Nagayama
{"title":"Variational quantum simulations of stochastic differential equations","authors":"K. Kubo, Yuya O. Nakagawa, Suguru Endo, S. Nagayama","doi":"10.1103/PhysRevA.103.052425","DOIUrl":null,"url":null,"abstract":"Stochastic differential equations (SDE), which models uncertain phenomena as the time evolution of random variables, are exploited in various fields of natural and social sciences such as finance. Since SDEs rarely admit analytical solutions and must usually be solved numerically with huge classical-computational resources in practical applications, there is strong motivation to use quantum computation to accelerate the calculation. Here, we propose a quantum-classical hybrid algorithm that solves SDEs based on variational quantum simulation (VQS). We first approximate the target SDE by a trinomial tree structure with discretization and then formulate it as the time-evolution of a quantum state embedding the probability distributions of the SDE variables. We embed the probability distribution directly in the amplitudes of the quantum state while the previous studies did the square-root of the probability distribution in the amplitudes. Our embedding enables us to construct simple quantum circuits that simulate the time-evolution of the state for general SDEs. We also develop a scheme to compute the expectation values of the SDE variables and discuss whether our scheme can achieve quantum speed-up for the expectation-value evaluations of the SDE variables. Finally, we numerically validate our algorithm by simulating several types of stochastic processes. Our proposal provides a new direction for simulating SDEs on quantum computers.","PeriodicalId":8484,"journal":{"name":"arXiv: Quantum Physics","volume":"56 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantum Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevA.103.052425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

Stochastic differential equations (SDE), which models uncertain phenomena as the time evolution of random variables, are exploited in various fields of natural and social sciences such as finance. Since SDEs rarely admit analytical solutions and must usually be solved numerically with huge classical-computational resources in practical applications, there is strong motivation to use quantum computation to accelerate the calculation. Here, we propose a quantum-classical hybrid algorithm that solves SDEs based on variational quantum simulation (VQS). We first approximate the target SDE by a trinomial tree structure with discretization and then formulate it as the time-evolution of a quantum state embedding the probability distributions of the SDE variables. We embed the probability distribution directly in the amplitudes of the quantum state while the previous studies did the square-root of the probability distribution in the amplitudes. Our embedding enables us to construct simple quantum circuits that simulate the time-evolution of the state for general SDEs. We also develop a scheme to compute the expectation values of the SDE variables and discuss whether our scheme can achieve quantum speed-up for the expectation-value evaluations of the SDE variables. Finally, we numerically validate our algorithm by simulating several types of stochastic processes. Our proposal provides a new direction for simulating SDEs on quantum computers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机微分方程的变分量子模拟
随机微分方程(SDE)将不确定现象建模为随机变量的时间演化,在金融等自然科学和社会科学的各个领域都得到了应用。由于SDEs很少允许解析解,并且在实际应用中通常必须使用大量的经典计算资源进行数值求解,因此使用量子计算来加速计算具有强烈的动机。在此,我们提出一种基于变分量子模拟(VQS)的量子经典混合算法来求解SDEs。我们首先用离散化的三叉树结构近似目标SDE,然后将其表述为嵌入SDE变量概率分布的量子态的时间演化。我们将概率分布直接嵌入到量子态的幅值中,而以前的研究是在幅值中嵌入概率分布的平方根。我们的嵌入使我们能够构建简单的量子电路来模拟一般sde状态的时间演化。我们还开发了一种计算SDE变量期望值的方案,并讨论了该方案是否可以实现SDE变量期望值计算的量子加速。最后,我们通过模拟几种类型的随机过程来数值验证我们的算法。我们的研究为在量子计算机上模拟SDEs提供了一个新的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generative Quantum Machine Learning A Wave Nature-Based Interpretation of The Nonclassical Feature of Photon Bunching On A Beam Splitter The Future of Quantum Theory: A Way Out of the Impasse Partial Measurements of Quantum Systems Emergence of the Classical from within the Quantum Universe
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1