Ultrasonic Characterization of Biomimetic Porous Scaffold Using Machine Learning: Application of Biot’s Theory

M. Hodaei, P. Maghoul
{"title":"Ultrasonic Characterization of Biomimetic Porous Scaffold Using Machine Learning: Application of Biot’s Theory","authors":"M. Hodaei, P. Maghoul","doi":"10.1115/imece2021-72746","DOIUrl":null,"url":null,"abstract":"\n A two-dimensional infinite length porous slab is employed to simulate biomimetic porous scaffold. The pores of slab are saturated with a relatively low and high viscous fluids such as air and bone marrow. Ultrasonic waves based on the Biot-JKD formulation travel through the porous slab and create viscous exchanges between the skeletal frame and the fluid. The Biot-JKD formulation focuses on the parameters, biomarkers of the biomimetic porous scaffold, which are sensitive to the transmission and reflection signals. These parameters include porosity, tortuosity, viscous characteristic length, Young’s modulus, and Poisson’s ratio. An artificial neural network (ANN) based on a set of the biomarkers is rendered to model the transmitted and reflected waves from the porous slab. The validation of the proposed analytical approach and released artificial neural network is evaluated by the pertinent literature. The output of the artificial neural network, the transmitted-reflected waves, is inversely applied to the analytical expression to estimate the biomarkers associated with bone regeneration. The results show that for a medium filled with a relatively high viscous fluid the longitudinal waves are more prone to estimate mechanical properties of the medium such as Young’s modulus and Poisson’s ratio while the transverse waves, in addition to longitudinal waves, are essential to estimate the physical properties of the medium including porosity, tortuosity, and viscous characteristic length. Furthermore, it is also concluded that for the medium filled with a relatively low viscous fluid such as air the longitudinal waves alone is able to estimate the biomarkers, which reduce significantly the computational efforts.","PeriodicalId":23648,"journal":{"name":"Volume 1: Acoustics, Vibration, and Phononics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Acoustics, Vibration, and Phononics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2021-72746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A two-dimensional infinite length porous slab is employed to simulate biomimetic porous scaffold. The pores of slab are saturated with a relatively low and high viscous fluids such as air and bone marrow. Ultrasonic waves based on the Biot-JKD formulation travel through the porous slab and create viscous exchanges between the skeletal frame and the fluid. The Biot-JKD formulation focuses on the parameters, biomarkers of the biomimetic porous scaffold, which are sensitive to the transmission and reflection signals. These parameters include porosity, tortuosity, viscous characteristic length, Young’s modulus, and Poisson’s ratio. An artificial neural network (ANN) based on a set of the biomarkers is rendered to model the transmitted and reflected waves from the porous slab. The validation of the proposed analytical approach and released artificial neural network is evaluated by the pertinent literature. The output of the artificial neural network, the transmitted-reflected waves, is inversely applied to the analytical expression to estimate the biomarkers associated with bone regeneration. The results show that for a medium filled with a relatively high viscous fluid the longitudinal waves are more prone to estimate mechanical properties of the medium such as Young’s modulus and Poisson’s ratio while the transverse waves, in addition to longitudinal waves, are essential to estimate the physical properties of the medium including porosity, tortuosity, and viscous characteristic length. Furthermore, it is also concluded that for the medium filled with a relatively low viscous fluid such as air the longitudinal waves alone is able to estimate the biomarkers, which reduce significantly the computational efforts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的仿生多孔支架超声表征:Biot理论的应用
采用二维无限长多孔板模拟仿生多孔支架。板坯孔隙中充满了相对低粘度和高粘度的流体,如空气和骨髓。基于Biot-JKD配方的超声波穿过多孔板,在骨架框架和流体之间产生粘性交换。Biot-JKD配方关注的是对传输和反射信号敏感的仿生多孔支架的参数、生物标志物。这些参数包括孔隙度、弯曲度、粘性特征长度、杨氏模量和泊松比。基于一组生物标记物构建了人工神经网络(ANN)来模拟多孔板的透射波和反射波。通过相关文献对提出的分析方法和发布的人工神经网络的有效性进行了评估。人工神经网络的输出,即透射反射波,反向应用于分析表达式,以估计与骨再生相关的生物标志物。结果表明,对于高粘性流体介质,纵波更容易估计介质的力学性质,如杨氏模量和泊松比,而横波除纵波外,还可以估计介质的物理性质,包括孔隙度、弯曲度和粘性特征长度。此外,还得出结论,对于充满相对低粘性流体(如空气)的介质,仅使用纵波就可以估计生物标记物,这大大减少了计算量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Machine Learning Framework for Physics-Based Multi-Fidelity Modeling and Health Monitoring for a Composite Wing Design and Numerical Analysis of Locally-Resonant Meta-Lattice Structure for Vibration Attenuation Research on Testing Method and Device of Sensitivity Consistency of Acoustic Emission Sensors Unsupervised Online Anomaly Detection of Metal Additive Manufacturing Processes via a Statistical Time-Frequency Domain Approach Nonlinear Electro-Mechanical Impedance Spectroscopy for Comprehensive Monitoring of Carbon Fiber Reinforced Composite Laminates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1