Neural Semantic Encoders

Tsendsuren Munkhdalai, Hong Yu
{"title":"Neural Semantic Encoders","authors":"Tsendsuren Munkhdalai, Hong Yu","doi":"10.18653/V1/E17-1038","DOIUrl":null,"url":null,"abstract":"We present a memory augmented neural network for natural language understanding: Neural Semantic Encoders. NSE is equipped with a novel memory update rule and has a variable sized encoding memory that evolves over time and maintains the understanding of input sequences through read, compose and write operations. NSE can also access 1 multiple and shared memories. In this paper, we demonstrated the effectiveness and the flexibility of NSE on five different natural language tasks: natural language inference, question answering, sentence classification, document sentiment analysis and machine translation where NSE achieved state-of-the-art performance when evaluated on publically available benchmarks. For example, our shared-memory model showed an encouraging result on neural machine translation, improving an attention-based baseline by approximately 1.0 BLEU.","PeriodicalId":74541,"journal":{"name":"Proceedings of the conference. Association for Computational Linguistics. Meeting","volume":"91 1","pages":"397-407"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"133","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the conference. Association for Computational Linguistics. Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/V1/E17-1038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 133

Abstract

We present a memory augmented neural network for natural language understanding: Neural Semantic Encoders. NSE is equipped with a novel memory update rule and has a variable sized encoding memory that evolves over time and maintains the understanding of input sequences through read, compose and write operations. NSE can also access 1 multiple and shared memories. In this paper, we demonstrated the effectiveness and the flexibility of NSE on five different natural language tasks: natural language inference, question answering, sentence classification, document sentiment analysis and machine translation where NSE achieved state-of-the-art performance when evaluated on publically available benchmarks. For example, our shared-memory model showed an encouraging result on neural machine translation, improving an attention-based baseline by approximately 1.0 BLEU.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经语义编码器
我们提出了一种用于自然语言理解的记忆增强神经网络:神经语义编码器。NSE配备了一种新颖的内存更新规则,并具有可变大小的编码内存,随着时间的推移而发展,并通过读、写和写操作保持对输入序列的理解。NSE还可以访问多个内存和共享内存。在本文中,我们展示了NSE在五个不同的自然语言任务上的有效性和灵活性:自然语言推理、问题回答、句子分类、文档情感分析和机器翻译,其中NSE在公开可用的基准测试中获得了最先进的性能。例如,我们的共享内存模型在神经机器翻译上显示出令人鼓舞的结果,将基于注意力的基线提高了大约1.0 BLEU。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
IRIS: Interpretable Retrieval-Augmented Classification for Long Interspersed Document Sequences. GraphCheck: Breaking Long-Term Text Barriers with Extracted Knowledge Graph-Powered Fact-Checking. Unraveling LoRA Interference: Orthogonal Subspaces for Robust Model Merging. OLIVE: Object Level In-Context Visual Embeddings. Unity in Diversity: Collaborative Pre-training Across Multimodal Medical Sources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1