C. Sun, Wei Li, Hao Wu, Xue F. Huang, Jing Li, Z. Fu, J. Tang, Yuxin Yin
{"title":"Abstract P3-10-29: tRNA-derived fragments as novel predictive biomarkers for trastuzumab-resistant breast cancer","authors":"C. Sun, Wei Li, Hao Wu, Xue F. Huang, Jing Li, Z. Fu, J. Tang, Yuxin Yin","doi":"10.1158/1538-7445.sabcs18-p3-10-29","DOIUrl":null,"url":null,"abstract":"Background: Resistance to trastuzumab remains a common challenge to HER-2 positive breast cancer. Up until now, the underlying mechanism of trastuzumab resistance is still unclear. tRNA-derived small non-coding RNAs, a new class of small non-coding RNA (sncRNAs), have been observed to play an important role in cancer progression. However, the relationship between tRNA-derived fragments and trastuzumab resistance is still unknown. Methods:We detected the levels of tRNA-derived fragments expression in normal breast epithelial cell lines, trastuzumab-sensitive and -resistant breast cancer cell linesusing high-throughput sequencing.qRT-PCR was conducted to validate the differentially expressed fragments in serums from trastuzumab-sensitive and -resistant patients. A receiver operating characteristic (ROC) curve analysis was performed to evaluate the power of specific tRNA-derived fragments.Progression-free survival (PFS) was analyzed using Cox-regression. Results:Our sequence results showed that tRNA-derived fragments were differentially expressed in the HBL-100, SKBR3, and JIMT-1 cell lines. tRF-30-JZOYJE22RR33 and tRF-27-ZDXPHO53KSN were found significantly upregulated in trastuzumab-resistant patients compared to sensitive individuals, and the ROC analysis showed that tRF-30-JZOYJE22RR33 and tRF-27-ZDXPHO53KSN were correlated with trastuzumab resistance. In a multivariate analysis, higher levels of tRF-30-JZOYJE22RR33 and tRF-27-ZDXPHO53KSN expression were associated with significantly shorter PFS in patients with metastatic HER-2 positive breast cancer. Conclusion: Our results suggest that tRF-30-JZOYJE22RR33 and tRF-27-ZDXPHO53KSN play important roles in trastuzumab resistance. Patients with high levels of tRF-30-JZOYJE22RR33 and tRF-27-ZDXPHO53KSN expression benefitted less from trastuzumab-based therapy than those that express lower-levels of these molecules. tRF-30-JZOYJE22RR33 and tRF-27-ZDXPHO53KSN may be potential biomarkers and intervention targets in the clinical treatment of trastuzumab-resistant breast cancer. Citation Format: Sun C, Li W, Wu H, Huang X, Li J, Fu Z, Tang J, Yin Y. tRNA-derived fragments as novel predictive biomarkers for trastuzumab-resistant breast cancer [abstract]. In: Proceedings of the 2018 San Antonio Breast Cancer Symposium; 2018 Dec 4-8; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2019;79(4 Suppl):Abstract nr P3-10-29.","PeriodicalId":20307,"journal":{"name":"Poster Session Abstracts","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Poster Session Abstracts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1158/1538-7445.sabcs18-p3-10-29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Resistance to trastuzumab remains a common challenge to HER-2 positive breast cancer. Up until now, the underlying mechanism of trastuzumab resistance is still unclear. tRNA-derived small non-coding RNAs, a new class of small non-coding RNA (sncRNAs), have been observed to play an important role in cancer progression. However, the relationship between tRNA-derived fragments and trastuzumab resistance is still unknown. Methods:We detected the levels of tRNA-derived fragments expression in normal breast epithelial cell lines, trastuzumab-sensitive and -resistant breast cancer cell linesusing high-throughput sequencing.qRT-PCR was conducted to validate the differentially expressed fragments in serums from trastuzumab-sensitive and -resistant patients. A receiver operating characteristic (ROC) curve analysis was performed to evaluate the power of specific tRNA-derived fragments.Progression-free survival (PFS) was analyzed using Cox-regression. Results:Our sequence results showed that tRNA-derived fragments were differentially expressed in the HBL-100, SKBR3, and JIMT-1 cell lines. tRF-30-JZOYJE22RR33 and tRF-27-ZDXPHO53KSN were found significantly upregulated in trastuzumab-resistant patients compared to sensitive individuals, and the ROC analysis showed that tRF-30-JZOYJE22RR33 and tRF-27-ZDXPHO53KSN were correlated with trastuzumab resistance. In a multivariate analysis, higher levels of tRF-30-JZOYJE22RR33 and tRF-27-ZDXPHO53KSN expression were associated with significantly shorter PFS in patients with metastatic HER-2 positive breast cancer. Conclusion: Our results suggest that tRF-30-JZOYJE22RR33 and tRF-27-ZDXPHO53KSN play important roles in trastuzumab resistance. Patients with high levels of tRF-30-JZOYJE22RR33 and tRF-27-ZDXPHO53KSN expression benefitted less from trastuzumab-based therapy than those that express lower-levels of these molecules. tRF-30-JZOYJE22RR33 and tRF-27-ZDXPHO53KSN may be potential biomarkers and intervention targets in the clinical treatment of trastuzumab-resistant breast cancer. Citation Format: Sun C, Li W, Wu H, Huang X, Li J, Fu Z, Tang J, Yin Y. tRNA-derived fragments as novel predictive biomarkers for trastuzumab-resistant breast cancer [abstract]. In: Proceedings of the 2018 San Antonio Breast Cancer Symposium; 2018 Dec 4-8; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2019;79(4 Suppl):Abstract nr P3-10-29.