An investigation of cutting parameters effect on sound level, surface roughness, and power consumption during machining of hardened AISI 4140

IF 1.2 4区 工程技术 Q3 ENGINEERING, MECHANICAL Mechanics & Industry Pub Date : 2020-01-01 DOI:10.1051/meca/2020068
Abidin Şahinoğlu, Efehan Ulas
{"title":"An investigation of cutting parameters effect on sound level, surface roughness, and power consumption during machining of hardened AISI 4140","authors":"Abidin Şahinoğlu, Efehan Ulas","doi":"10.1051/meca/2020068","DOIUrl":null,"url":null,"abstract":"In recent years, the necessity for energy in the manufacturing industry has become an important problem because fossil fuel reserves are decreasing in order to produce energy. Therefore, the efficient use of energy has become an important research topic. In this study, energy efficiency is investigated in detail for sustainable life and manufacturing. AISI 4140 material with high hardness of 50 HRC hardness has been applied cryogenic process to improve mechanical and machinability properties. In this experiment study, the effects of feed rate (0.04, 0.08, 0.12 mm/rev), cutting speed (140, 160, 180 m/min), depth of cut (0.05, 0.10, 0.15 mm) and tool radius (0.4, 0.8) on energy consumption, surface roughness and sound intensity were investigated. Then, a new mathematical model with high accuracy was developed. Total power consumption was calculated by considering the instantaneous current value and machining time. As a result, it is found that good surface quality obtained when the feed rate is low, and the tool radius is high and the machining time is shortened, the energy consumption is reduced due to the increase in cutting speed, depth of cut and feed rate. Also, it is found that the tool radius has a limited effect on energy consumption, but low feed value increases energy consumption.","PeriodicalId":49018,"journal":{"name":"Mechanics & Industry","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics & Industry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1051/meca/2020068","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 11

Abstract

In recent years, the necessity for energy in the manufacturing industry has become an important problem because fossil fuel reserves are decreasing in order to produce energy. Therefore, the efficient use of energy has become an important research topic. In this study, energy efficiency is investigated in detail for sustainable life and manufacturing. AISI 4140 material with high hardness of 50 HRC hardness has been applied cryogenic process to improve mechanical and machinability properties. In this experiment study, the effects of feed rate (0.04, 0.08, 0.12 mm/rev), cutting speed (140, 160, 180 m/min), depth of cut (0.05, 0.10, 0.15 mm) and tool radius (0.4, 0.8) on energy consumption, surface roughness and sound intensity were investigated. Then, a new mathematical model with high accuracy was developed. Total power consumption was calculated by considering the instantaneous current value and machining time. As a result, it is found that good surface quality obtained when the feed rate is low, and the tool radius is high and the machining time is shortened, the energy consumption is reduced due to the increase in cutting speed, depth of cut and feed rate. Also, it is found that the tool radius has a limited effect on energy consumption, but low feed value increases energy consumption.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
研究了淬火aisi4140加工过程中切削参数对声级、表面粗糙度和能耗的影响
近年来,制造业对能源的需求已成为一个重要问题,因为为了生产能源,化石燃料储量正在减少。因此,能源的高效利用已成为一个重要的研究课题。在本研究中,能源效率对可持续生活和制造进行了详细的研究。AISI 4140材料具有50 HRC的高硬度,采用深冷工艺提高了机械性能和可加工性。实验研究了进给量(0.04、0.08、0.12 mm/rev)、切削速度(140、160、180 m/min)、切削深度(0.05、0.10、0.15 mm)和刀具半径(0.4、0.8)对能量消耗、表面粗糙度和声强的影响。在此基础上,建立了一种新的高精度数学模型。综合考虑瞬时电流值和加工时间,计算总功耗。结果发现,在进给速度较低、刀具半径较大、加工时间缩短的情况下,获得了较好的表面质量,由于切削速度、切削深度和进给速度的增加而降低了能耗。刀具半径对能量消耗的影响有限,但低进给值会增加能量消耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mechanics & Industry
Mechanics & Industry ENGINEERING, MECHANICAL-MECHANICS
CiteScore
2.80
自引率
0.00%
发文量
25
审稿时长
>12 weeks
期刊介绍: An International Journal on Mechanical Sciences and Engineering Applications With papers from industry, Research and Development departments and academic institutions, this journal acts as an interface between research and industry, coordinating and disseminating scientific and technical mechanical research in relation to industrial activities. Targeted readers are technicians, engineers, executives, researchers, and teachers who are working in industrial companies as managers or in Research and Development departments, technical centres, laboratories, universities, technical and engineering schools. The journal is an AFM (Association Française de Mécanique) publication.
期刊最新文献
Numerical investigation of thermal buckling and post-buckling behavior of an EN AW 6016-T4 car roof assembled in a steel body-in-white Analyzing the influence of lifter design and ball mill speed on grinding performance, particle behavior and contact forces A neural network-based data-driven local modeling of spotwelded plates under impact Multi-objective shape optimization of developable Bézier-like surfaces using non-dominated sorting genetic algorithm Experimental quantification of heat haze errors in stereo-DIC displacements: Application to thermoplastics thermoforming temperature range
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1