UAVs’ autonomous collision avoidance in urban space*

Ruixuan Wei, Qirui Zhang, Zhuofan Xu, Kai Zhou, Xiaolin Zhao
{"title":"UAVs’ autonomous collision avoidance in urban space*","authors":"Ruixuan Wei, Qirui Zhang, Zhuofan Xu, Kai Zhou, Xiaolin Zhao","doi":"10.1109/GNCC42960.2018.9019059","DOIUrl":null,"url":null,"abstract":"Small UAVs are seeking wide usage in urban space for its advantageous performance. However, there are crowded with static and dynamic buildings, causing serious challenges for UAVs’ safety. This paper proposes a novel autonomous collision avoidance method based on time-obstacle dynamic map. First, the state estimation and trajectory prediction are performed based on extended Kalman filtering. Second, the time-obstacle dynamic map is constructed via introducing time axis. Third, the flyable paths are searched on the basis of breadth first approach and then the optimal path can be obtained through A-Star algorithm. Finally, the simulation results have shown that the proposed collision avoidance method can avoid immobile building and moving obstacles, and making a safe path for UAVs in urban space","PeriodicalId":6623,"journal":{"name":"2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC)","volume":"22 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GNCC42960.2018.9019059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Small UAVs are seeking wide usage in urban space for its advantageous performance. However, there are crowded with static and dynamic buildings, causing serious challenges for UAVs’ safety. This paper proposes a novel autonomous collision avoidance method based on time-obstacle dynamic map. First, the state estimation and trajectory prediction are performed based on extended Kalman filtering. Second, the time-obstacle dynamic map is constructed via introducing time axis. Third, the flyable paths are searched on the basis of breadth first approach and then the optimal path can be obtained through A-Star algorithm. Finally, the simulation results have shown that the proposed collision avoidance method can avoid immobile building and moving obstacles, and making a safe path for UAVs in urban space
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
城市空间无人机自主避碰研究*
小型无人机以其优越的性能在城市空间中得到广泛应用。然而,静态和动态建筑拥挤,给无人机的安全性带来了严峻的挑战。提出了一种基于时间-障碍动态映射的自动避碰方法。首先,基于扩展卡尔曼滤波进行状态估计和轨迹预测;其次,通过引入时间轴构造时间-障碍动态图;第三,基于广度优先法搜索可飞路径,通过A-Star算法得到最优路径;最后,仿真结果表明,所提出的避碰方法可以避开不移动的建筑物和移动的障碍物,为无人机在城市空间中提供安全的路径
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Sliding-Mode Disturbance Observer-Based Nonlinear Control for Unmanned Dual-Arm Aerial Manipulator Subject to State Constraints A Cloud Detection Method for Landsat 8 Satellite Remote Sensing Images Based on Improved CDNet Model Time-coordinated path following for multiple agile fixed-wing UAVs with end-roll expectations A Novel Model Calibration Method for Active Magnetic Bearing Based on Deep Reinforcement Learning Wind and Actuator Fault Estimation for a Quadrotor UAV Based on Two-Stage Particle Filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1