Semi-supervised Learning for Aggregated Multilayer Graphs Using Diffuse Interface Methods and Fast Matrix-Vector Products

IF 1.9 Q1 MATHEMATICS, APPLIED SIAM journal on mathematics of data science Pub Date : 2020-07-10 DOI:10.1137/20M1352028
Kai Bergermann, M. Stoll, Toni Volkmer
{"title":"Semi-supervised Learning for Aggregated Multilayer Graphs Using Diffuse Interface Methods and Fast Matrix-Vector Products","authors":"Kai Bergermann, M. Stoll, Toni Volkmer","doi":"10.1137/20M1352028","DOIUrl":null,"url":null,"abstract":"We generalize a graph-based multiclass semi-supervised classification technique based on diffuse interface methods to multilayer graphs. Besides the treatment of various applications with an inherent multilayer structure, we present a very flexible approach that interprets high-dimensional data in a low-dimensional multilayer graph representation. Highly efficient numerical methods involving the spectral decomposition of the corresponding differential graph operators as well as fast matrix-vector products based on the nonequispaced fast Fourier transform (NFFT) enable the rapid treatment of large and high-dimensional data sets. We perform various numerical tests putting a special focus on image segmentation. In particular, we test the performance of our method on data sets with up to 10 million nodes per layer as well as up to 104 dimensions resulting in graphs with up to 52 layers. While all presented numerical experiments can be run on an average laptop computer, the linear dependence per iteration step of the runtime on the network size in all stages of our algorithm makes it scalable to even larger and higher-dimensional problems.","PeriodicalId":74797,"journal":{"name":"SIAM journal on mathematics of data science","volume":"80 1","pages":"758-785"},"PeriodicalIF":1.9000,"publicationDate":"2020-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM journal on mathematics of data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/20M1352028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 8

Abstract

We generalize a graph-based multiclass semi-supervised classification technique based on diffuse interface methods to multilayer graphs. Besides the treatment of various applications with an inherent multilayer structure, we present a very flexible approach that interprets high-dimensional data in a low-dimensional multilayer graph representation. Highly efficient numerical methods involving the spectral decomposition of the corresponding differential graph operators as well as fast matrix-vector products based on the nonequispaced fast Fourier transform (NFFT) enable the rapid treatment of large and high-dimensional data sets. We perform various numerical tests putting a special focus on image segmentation. In particular, we test the performance of our method on data sets with up to 10 million nodes per layer as well as up to 104 dimensions resulting in graphs with up to 52 layers. While all presented numerical experiments can be run on an average laptop computer, the linear dependence per iteration step of the runtime on the network size in all stages of our algorithm makes it scalable to even larger and higher-dimensional problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于扩散接口方法和快速矩阵向量积的聚合多层图半监督学习
将一种基于扩散接口方法的基于图的多类半监督分类技术推广到多层图。除了处理具有固有多层结构的各种应用程序外,我们还提出了一种非常灵活的方法,可以用低维多层图表示来解释高维数据。高效的数值方法涉及相应的微分图算子的谱分解以及基于非均衡快速傅里叶变换(NFFT)的快速矩阵向量乘积,使得快速处理大型和高维数据集成为可能。我们进行了各种数值测试,特别关注图像分割。特别是,我们在每层多达1000万个节点的数据集以及多达104个维度的数据集上测试了我们的方法的性能,从而产生了多达52层的图。虽然所有的数值实验都可以在一台普通的笔记本电脑上运行,但在我们算法的所有阶段,运行时的每个迭代步骤对网络大小的线性依赖使得它可以扩展到更大、更高维度的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Entropic Optimal Transport on Random Graphs A Universal Trade-off Between the Model Size, Test Loss, and Training Loss of Linear Predictors Approximating Probability Distributions by Using Wasserstein Generative Adversarial Networks Adversarial Robustness of Sparse Local Lipschitz Predictors The GenCol Algorithm for High-Dimensional Optimal Transport: General Formulation and Application to Barycenters and Wasserstein Splines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1