Simultaneous quantitative UV spectrophotometric determination of multicomponents of amino acids using linear neural network

Chunsheng Yin , Yang Shen , Shushen Liu , Qingsheng Yin , Weimin Guo , Zhongxiao Pan
{"title":"Simultaneous quantitative UV spectrophotometric determination of multicomponents of amino acids using linear neural network","authors":"Chunsheng Yin ,&nbsp;Yang Shen ,&nbsp;Shushen Liu ,&nbsp;Qingsheng Yin ,&nbsp;Weimin Guo ,&nbsp;Zhongxiao Pan","doi":"10.1016/S0097-8485(00)00097-8","DOIUrl":null,"url":null,"abstract":"<div><p>Simultaneous determination of multicomponents of six amino acids with a novel chemometric technique-a linear neural network (LNN) algorithm is reported in this study. Based on the data correlation coefficient and standard deviation method, 17 representative wavelength points are selected from the original UV spectral data (343 points) as the original input patterns for LNN to build a neural network model. The results obtained only by iterating 15 times is satisfying, with a correlation coefficient of 0.999 and a relative small standard deviation.</p></div>","PeriodicalId":79331,"journal":{"name":"Computers & chemistry","volume":"25 3","pages":"Pages 239-243"},"PeriodicalIF":0.0000,"publicationDate":"2001-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0097-8485(00)00097-8","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097848500000978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Simultaneous determination of multicomponents of six amino acids with a novel chemometric technique-a linear neural network (LNN) algorithm is reported in this study. Based on the data correlation coefficient and standard deviation method, 17 representative wavelength points are selected from the original UV spectral data (343 points) as the original input patterns for LNN to build a neural network model. The results obtained only by iterating 15 times is satisfying, with a correlation coefficient of 0.999 and a relative small standard deviation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
线性神经网络紫外分光光度法同时定量测定氨基酸多组分
本文报道了一种新的化学计量技术-线性神经网络(LNN)算法同时测定6种氨基酸的多组分。基于数据相关系数和标准差法,从原始紫外光谱数据(343个点)中选取17个具有代表性的波长点作为LNN的原始输入模式,构建神经网络模型。迭代15次即可得到满意的结果,相关系数为0.999,标准差较小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Instructions to authors Author Index Keyword Index Volume contents New molecular surface-based 3D-QSAR method using Kohonen neural network and 3-way PLS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1