Mengyun Liu, Renjian Pan, Fangming Ye, Xin Li, K. Chakrabarty, Xinli Gu
{"title":"Fine-grained Adaptive Testing Based on Quality Prediction","authors":"Mengyun Liu, Renjian Pan, Fangming Ye, Xin Li, K. Chakrabarty, Xinli Gu","doi":"10.1145/3385261","DOIUrl":null,"url":null,"abstract":"The ever-increasing complexity of integrated circuits inevitably leads to high test cost. Adaptive testing provides an effective solution for test-cost reduction; this testing framework selects the important test items for each set of chips. However, adaptive testing methods designed for digital circuits are coarse-grained, and they are targeted only at systematic defects. To incorporate fabrication variations and random defects in the testing framework, we propose a fine-grained adaptive testing method based on machine learning. We use the parametric test results from the previous stages of test to train a quality-prediction model for use in subsequent test stages. Next, we partition a given lot of chips into two groups based on their predicted quality. A test-selection method based on statistical learning is applied to the chips with high predicted quality. An ad hoc test-selection method is proposed and applied to the chips with low predicted quality. Experimental results using a large number of fabricated chips and the associated test data show that to achieve the same defect level as in prior work on adaptive testing, the fine-grained adaptive testing method reduces test cost by 90% for low-quality chips and up to 7% for all the chips in a lot.","PeriodicalId":7063,"journal":{"name":"ACM Trans. Design Autom. Electr. Syst.","volume":"58 1","pages":"38:1-38:25"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Design Autom. Electr. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3385261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
The ever-increasing complexity of integrated circuits inevitably leads to high test cost. Adaptive testing provides an effective solution for test-cost reduction; this testing framework selects the important test items for each set of chips. However, adaptive testing methods designed for digital circuits are coarse-grained, and they are targeted only at systematic defects. To incorporate fabrication variations and random defects in the testing framework, we propose a fine-grained adaptive testing method based on machine learning. We use the parametric test results from the previous stages of test to train a quality-prediction model for use in subsequent test stages. Next, we partition a given lot of chips into two groups based on their predicted quality. A test-selection method based on statistical learning is applied to the chips with high predicted quality. An ad hoc test-selection method is proposed and applied to the chips with low predicted quality. Experimental results using a large number of fabricated chips and the associated test data show that to achieve the same defect level as in prior work on adaptive testing, the fine-grained adaptive testing method reduces test cost by 90% for low-quality chips and up to 7% for all the chips in a lot.