Reverse Engineering SPARQL Queries

M. Arenas, G. I. Diaz, Egor V. Kostylev
{"title":"Reverse Engineering SPARQL Queries","authors":"M. Arenas, G. I. Diaz, Egor V. Kostylev","doi":"10.1145/2872427.2882989","DOIUrl":null,"url":null,"abstract":"Semantic Web systems provide open interfaces for end-users to access data via a powerful high-level query language, SPARQL. But users unfamiliar with either the details of SPARQL or properties of the target dataset may find it easier to query by example -- give examples of the information they want (or examples of both what they want and what they do not want) and let the system reverse engineer the desired query from the examples. This approach has been heavily used in the setting of relational databases. We provide here an investigation of the reverse engineering problem in the context of SPARQL. We first provide a theoretical study, formalising variants of the reverse engineering problem and giving tight bounds on its complexity. We next explain an implementation of a reverse engineering tool for positive examples. An experimental analysis of the tool shows that it scales well in the data size, number of examples, and in the size of the smallest query that fits the data. We also give evidence that reverse engineering tools can provide benefits on real-life datasets.","PeriodicalId":20455,"journal":{"name":"Proceedings of the 25th International Conference on World Wide Web","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th International Conference on World Wide Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2872427.2882989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60

Abstract

Semantic Web systems provide open interfaces for end-users to access data via a powerful high-level query language, SPARQL. But users unfamiliar with either the details of SPARQL or properties of the target dataset may find it easier to query by example -- give examples of the information they want (or examples of both what they want and what they do not want) and let the system reverse engineer the desired query from the examples. This approach has been heavily used in the setting of relational databases. We provide here an investigation of the reverse engineering problem in the context of SPARQL. We first provide a theoretical study, formalising variants of the reverse engineering problem and giving tight bounds on its complexity. We next explain an implementation of a reverse engineering tool for positive examples. An experimental analysis of the tool shows that it scales well in the data size, number of examples, and in the size of the smallest query that fits the data. We also give evidence that reverse engineering tools can provide benefits on real-life datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
逆向工程SPARQL查询
语义Web系统为最终用户提供开放接口,通过强大的高级查询语言SPARQL访问数据。但是,不熟悉SPARQL细节或目标数据集属性的用户可能会发现通过示例进行查询更容易——给出他们想要的信息的示例(或他们想要的和不想要的示例),并让系统从示例中反向工程所需的查询。这种方法在关系数据库的设置中被大量使用。我们在这里对SPARQL上下文中的逆向工程问题进行了调查。我们首先提供了一个理论研究,形式化了逆向工程问题的变体,并给出了其复杂性的严格界限。接下来,我们将为正例解释反向工程工具的实现。对该工具的实验分析表明,它在数据大小、示例数量和适合数据的最小查询大小方面都具有良好的可伸缩性。我们还提供了证据,证明逆向工程工具可以为现实生活中的数据集提供好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MapWatch: Detecting and Monitoring International Border Personalization on Online Maps Automatic Discovery of Attribute Synonyms Using Query Logs and Table Corpora Learning Global Term Weights for Content-based Recommender Systems From Freebase to Wikidata: The Great Migration GoCAD: GPU-Assisted Online Content-Adaptive Display Power Saving for Mobile Devices in Internet Streaming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1