{"title":"Path Oblivious Heap: Optimal and Practical Oblivious Priority Queue","authors":"E. Shi","doi":"10.1109/SP40000.2020.00037","DOIUrl":null,"url":null,"abstract":"We propose Path Oblivious Heap, an extremely simple, practical, and optimal oblivious priority queue. Our construction also implies a practical and optimal oblivious sorting algorithm which we call Path Oblivious Sort. Not only are our algorithms asymptotically optimal, we show that their practical performance is only a small constant factor worse than insecure baselines. More specificially, assuming roughly logarithmic client private storage, Path Oblivious Heap consumes 2× to 7× more bandwidth than the ordinary insecure binary heap; and Path Oblivious Sort consumes 4.5× to 6× more bandwidth than the insecure Merge Sort. We show that these performance results improve existing works by 1-2 orders of magnitude. Finally, we evaluate our algorithm for a multi-party computation scenario and show 7x to 8x reduction in the number of symmetric encryptions relative to the state of the art1.","PeriodicalId":6849,"journal":{"name":"2020 IEEE Symposium on Security and Privacy (SP)","volume":"304 1","pages":"842-858"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium on Security and Privacy (SP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SP40000.2020.00037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
We propose Path Oblivious Heap, an extremely simple, practical, and optimal oblivious priority queue. Our construction also implies a practical and optimal oblivious sorting algorithm which we call Path Oblivious Sort. Not only are our algorithms asymptotically optimal, we show that their practical performance is only a small constant factor worse than insecure baselines. More specificially, assuming roughly logarithmic client private storage, Path Oblivious Heap consumes 2× to 7× more bandwidth than the ordinary insecure binary heap; and Path Oblivious Sort consumes 4.5× to 6× more bandwidth than the insecure Merge Sort. We show that these performance results improve existing works by 1-2 orders of magnitude. Finally, we evaluate our algorithm for a multi-party computation scenario and show 7x to 8x reduction in the number of symmetric encryptions relative to the state of the art1.