{"title":"Study Of The Effects Of Non-Vacuum Deposited Alkali-Metals On Copper-Indium-Gallium-Selenide Absorber Layers For Solar Cells","authors":"O. Nwakanma, A. Morales-Acevedo, V. Subramaniam","doi":"10.1109/PVSC45281.2020.9300478","DOIUrl":null,"url":null,"abstract":"In this study, we carried out surface post-deposition treatment (PDT) on the CIGSe layer with heavier alkali metals using a non-vacuum method. X-ray diffraction studies confirmed that no secondary phases forms after the PDT. Morphological studies using scanning electron microscopy showed the presence of some enlarged grains after PDT with a substantial increase in mobility from Hall effect measurements. Further topographical characterization using atomic force microscopy (AFM) shows a reduction in peak-to-peak surface morphology due to the PDT. The comparison of the bandgap values after PDT showed a slight variation due to variation in the In/Ga ratios. The Raman spectroscopy of all the samples exhibited only the A1 characteristic mode of the chalcopyrite structures with a shoulder attributed to the presence of ordered vacancy layers (OVC) formed by the alkali metal secondary phases.","PeriodicalId":6773,"journal":{"name":"2020 47th IEEE Photovoltaic Specialists Conference (PVSC)","volume":"57 1","pages":"2392-2396"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 47th IEEE Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC45281.2020.9300478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this study, we carried out surface post-deposition treatment (PDT) on the CIGSe layer with heavier alkali metals using a non-vacuum method. X-ray diffraction studies confirmed that no secondary phases forms after the PDT. Morphological studies using scanning electron microscopy showed the presence of some enlarged grains after PDT with a substantial increase in mobility from Hall effect measurements. Further topographical characterization using atomic force microscopy (AFM) shows a reduction in peak-to-peak surface morphology due to the PDT. The comparison of the bandgap values after PDT showed a slight variation due to variation in the In/Ga ratios. The Raman spectroscopy of all the samples exhibited only the A1 characteristic mode of the chalcopyrite structures with a shoulder attributed to the presence of ordered vacancy layers (OVC) formed by the alkali metal secondary phases.