Preference Ontologies based on Social Media for compensating the Cold Start Problem

Christopher Krauss, Sascha Braun, S. Arbanowski
{"title":"Preference Ontologies based on Social Media for compensating the Cold Start Problem","authors":"Christopher Krauss, Sascha Braun, S. Arbanowski","doi":"10.1145/2659480.2659504","DOIUrl":null,"url":null,"abstract":"Recommendation systems leverage future internet services to predict personalized recommendations for products, services, media entities or other offerings. Based on the research and development of the FIcontent 2 initiative, we introduce an approach to compensate Cold Start and Sparsity Problems by analyzing semantics of external textual data, in terms of comments from social networks as well as item reviews from product and rating services. Thereby sentiment analysis and semantic keyword extraction approaches are explained and evaluated by using preliminary implementations. The mined data is transferred into, so called, preference ontologies describing the users interest in automatic analyzed topics and subsequently mapped to the properties of items in order to calculate the associated recommendation value.","PeriodicalId":74521,"journal":{"name":"Proceedings of the ... IEEE/ACM International Conference on Advances in Social Network Analysis and Mining. International Conference on Advances in Social Network Analysis and Mining","volume":"73 1","pages":"12:1-12:4"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IEEE/ACM International Conference on Advances in Social Network Analysis and Mining. International Conference on Advances in Social Network Analysis and Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2659480.2659504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Recommendation systems leverage future internet services to predict personalized recommendations for products, services, media entities or other offerings. Based on the research and development of the FIcontent 2 initiative, we introduce an approach to compensate Cold Start and Sparsity Problems by analyzing semantics of external textual data, in terms of comments from social networks as well as item reviews from product and rating services. Thereby sentiment analysis and semantic keyword extraction approaches are explained and evaluated by using preliminary implementations. The mined data is transferred into, so called, preference ontologies describing the users interest in automatic analyzed topics and subsequently mapped to the properties of items in order to calculate the associated recommendation value.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于社交媒体的偏好本体补偿冷启动问题
推荐系统利用未来的互联网服务来预测产品、服务、媒体实体或其他产品的个性化推荐。基于finicontent 2倡议的研究和开发,我们介绍了一种通过分析外部文本数据的语义来补偿冷启动和稀疏性问题的方法,包括来自社交网络的评论以及来自产品和评级服务的项目评论。因此,通过使用初步实现对情感分析和语义关键字提取方法进行了解释和评估。挖掘的数据被转换成所谓的偏好本体,描述用户对自动分析的主题的兴趣,然后映射到项目的属性,以便计算相关的推荐值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An ensemble transformer-based model for Arabic sentiment analysis Homophily and polarization on political twitter during the 2017 Norwegian election Perceptible sentiment analysis of students' WhatsApp group chats in valence, arousal, and dominance space A performant deep learning model for sentiment analysis of climate change DEES: a real-time system for event extraction from disaster-related web text
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1