Krishnapriya M Varier, Sumathi Thangarajan, Arulvasu Chinnasamy
{"title":"Effect of Imperatorin in Neuropathology of Parkinson’s Disease: An In Silico Study","authors":"Krishnapriya M Varier, Sumathi Thangarajan, Arulvasu Chinnasamy","doi":"10.25258/IJPCR.V9I08.9586","DOIUrl":null,"url":null,"abstract":"Parkinson’s disease (PD) is an age related neurodegenerative disorder characterized by thedopaminergic neurons loss in the midbrain. Even though there are some drugs in the market to ease parkinsonian symptoms, an accurate drug to prevent or cure the disease is still unknown. This study is an attempt to estimate in silico; a bioactive plant fucocoumarinImperatorin; for its ability as an anti-PD drug, using Autodock 4.2, Pre-ADMET and molinspiration tools against the antioxidants involved in neuropathology of PD, keeping amantadine as a positive control. The molecules selected for the study are Cyclo- Oxygenase 1 (COX-1), Homo-Oxygenase-1(HO-1), NRF2-Keap1, Lipo-Oxygenase 1(LOX-1), Phospholipase A2 (pA2), DJ-1 and superoxide dismutase (SOD). The reliability of the 3 Dimensional (3-D) structures generated were confirmed using WHATIF Server. The study predicted Imperatorin as a potent anti-PD drug, being good inhibitors of COX-1, HO-1 and LOX-1, having less human toxicity and better ability to cross Blood Brain-Barrier (BBB).","PeriodicalId":19889,"journal":{"name":"药学与临床研究","volume":"162 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"药学与临床研究","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.25258/IJPCR.V9I08.9586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Parkinson’s disease (PD) is an age related neurodegenerative disorder characterized by thedopaminergic neurons loss in the midbrain. Even though there are some drugs in the market to ease parkinsonian symptoms, an accurate drug to prevent or cure the disease is still unknown. This study is an attempt to estimate in silico; a bioactive plant fucocoumarinImperatorin; for its ability as an anti-PD drug, using Autodock 4.2, Pre-ADMET and molinspiration tools against the antioxidants involved in neuropathology of PD, keeping amantadine as a positive control. The molecules selected for the study are Cyclo- Oxygenase 1 (COX-1), Homo-Oxygenase-1(HO-1), NRF2-Keap1, Lipo-Oxygenase 1(LOX-1), Phospholipase A2 (pA2), DJ-1 and superoxide dismutase (SOD). The reliability of the 3 Dimensional (3-D) structures generated were confirmed using WHATIF Server. The study predicted Imperatorin as a potent anti-PD drug, being good inhibitors of COX-1, HO-1 and LOX-1, having less human toxicity and better ability to cross Blood Brain-Barrier (BBB).