{"title":"Assessment of adsorption kinetics for removal potential of Crystal Violet dye from aqueous solutions using Moroccan pyrophyllite","authors":"Youssef Miyah , Anissa Lahrichi , Meryem Idrissi , Saïd Boujraf , Hasnae Taouda , Farid Zerrouq","doi":"10.1016/j.jaubas.2016.06.001","DOIUrl":null,"url":null,"abstract":"<div><p>This study involves the adsorption of Crystal Violet (CV) dye adsorbed from solution on the pyrophyllite’s surface. The batch technique was used under a variety of conditions to produce quantitative adsorption, namely amount of adsorbent, dye concentration, contact time, pH solution and temperature. The maximum adsorption capacity of Crystal Violet on pyrophyllite was 9.58<!--> <!-->mg/g for 10<!--> <!-->mg/L of CV concentration, pH<!--> <!-->=<!--> <!-->6.8 at a temperature 20<!--> <!-->°C and 1<!--> <!-->g/L of adsorbent. This study of adsorption kinetics was carried out within framework of three models: intraparticle diffusion, pseudo-first order and pseudo-second order. The experimental isotherm data were analyzed using Langmuir and Freundlich models. Different thermodynamic parameters have shown spontaneous reaction with endothermic nature (The estimated value for Δ<em>G</em> was −7.64<!--> <!-->kJ/mol at 293<!--> <!-->K). Various techniques for characterizing the adsorbent were applied including X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) coupled by energy dispersive X-ray spectroscopy (EDX). In addition, the regenerated adsorbents technique was reused several times; this demonstrated an economical aspect of using pyrophyllite which underlines the re-use importance considering the material capacity to regenerate.</p></div>","PeriodicalId":17232,"journal":{"name":"Journal of the Association of Arab Universities for Basic and Applied Sciences","volume":"23 ","pages":"Pages 20-28"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jaubas.2016.06.001","citationCount":"114","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Association of Arab Universities for Basic and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1815385216300189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 114
Abstract
This study involves the adsorption of Crystal Violet (CV) dye adsorbed from solution on the pyrophyllite’s surface. The batch technique was used under a variety of conditions to produce quantitative adsorption, namely amount of adsorbent, dye concentration, contact time, pH solution and temperature. The maximum adsorption capacity of Crystal Violet on pyrophyllite was 9.58 mg/g for 10 mg/L of CV concentration, pH = 6.8 at a temperature 20 °C and 1 g/L of adsorbent. This study of adsorption kinetics was carried out within framework of three models: intraparticle diffusion, pseudo-first order and pseudo-second order. The experimental isotherm data were analyzed using Langmuir and Freundlich models. Different thermodynamic parameters have shown spontaneous reaction with endothermic nature (The estimated value for ΔG was −7.64 kJ/mol at 293 K). Various techniques for characterizing the adsorbent were applied including X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) coupled by energy dispersive X-ray spectroscopy (EDX). In addition, the regenerated adsorbents technique was reused several times; this demonstrated an economical aspect of using pyrophyllite which underlines the re-use importance considering the material capacity to regenerate.