Ultrasonic technique to measure stiffness coefficients of CMC and its implications on characterizing material degradation

Manohar Bashyam
{"title":"Ultrasonic technique to measure stiffness coefficients of CMC and its implications on characterizing material degradation","authors":"Manohar Bashyam","doi":"10.1016/0961-9526(95)00011-B","DOIUrl":null,"url":null,"abstract":"<div><p>The main objectives of this research are to characterize the fiber content of composite materials using nondestructive methods, to characterize fiber, matrix and fiber-matrix interface degradation in a quantitative manner and to predict the elastic behavior of the composite material using ultrasonic techniques.</p><p>We can achieve the above objectives if we can experimentally compute the stiffness matrix that can be derived by either destructive or nondestructive methods. We focus on nondestructive methods to generate the stiffness matrix of ceramic matrix composites (CMC) using ultrasonic techniques. The use of ultrasonic waves in measurement of the dynamic elastic moduli of solids is well known (Truell <em>et al.</em> (1969). <em>Ultrasonic Methods in Solid State Physics</em>, Academic Press). If the density and elastic anisotropy of a solid are specified then the elastic moduli can be deduced from wave speed measurements of shear and longitudinal waves propagating in particular directions in the solid. The relations between wave speed and moduli follow from the theory of small amplitude elastic wave propagating in an anisotropic solid (Musgrave (1970). <em>Crystal Acoustics</em>, Holden-Day).</p><p>In this paper, we will discuss the experiments conducted on three CMC (CAS-Nicalon) unidirectional blocks with varying fiber fractions estimated at 31, 42 and 51%, using ultrasonic longitudinal, transverse and surface acoustic wave (SAW) velocities. Techniques to improve and automate data acquisition are discussed along with the experimental results.</p></div>","PeriodicalId":100298,"journal":{"name":"Composites Engineering","volume":"5 6","pages":"Pages 735-742"},"PeriodicalIF":0.0000,"publicationDate":"1995-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0961-9526(95)00011-B","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/096195269500011B","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The main objectives of this research are to characterize the fiber content of composite materials using nondestructive methods, to characterize fiber, matrix and fiber-matrix interface degradation in a quantitative manner and to predict the elastic behavior of the composite material using ultrasonic techniques.

We can achieve the above objectives if we can experimentally compute the stiffness matrix that can be derived by either destructive or nondestructive methods. We focus on nondestructive methods to generate the stiffness matrix of ceramic matrix composites (CMC) using ultrasonic techniques. The use of ultrasonic waves in measurement of the dynamic elastic moduli of solids is well known (Truell et al. (1969). Ultrasonic Methods in Solid State Physics, Academic Press). If the density and elastic anisotropy of a solid are specified then the elastic moduli can be deduced from wave speed measurements of shear and longitudinal waves propagating in particular directions in the solid. The relations between wave speed and moduli follow from the theory of small amplitude elastic wave propagating in an anisotropic solid (Musgrave (1970). Crystal Acoustics, Holden-Day).

In this paper, we will discuss the experiments conducted on three CMC (CAS-Nicalon) unidirectional blocks with varying fiber fractions estimated at 31, 42 and 51%, using ultrasonic longitudinal, transverse and surface acoustic wave (SAW) velocities. Techniques to improve and automate data acquisition are discussed along with the experimental results.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超声技术测量CMC的刚度系数及其对表征材料退化的意义
本研究的主要目的是利用无损方法表征复合材料的纤维含量,定量表征纤维、基体和纤维-基体界面的退化,并利用超声技术预测复合材料的弹性行为。如果我们能够通过实验计算出可以通过破坏性或非破坏性方法导出的刚度矩阵,我们就可以实现上述目标。研究了利用超声技术生成陶瓷基复合材料刚度矩阵的无损方法。使用超声波测量固体的动态弹性模量是众所周知的(Truell et al.(1969))。固体物理中的超声方法,学术出版社)。如果确定了固体的密度和弹性各向异性,则可以通过测量在固体中沿特定方向传播的横波和纵波的波速来推导出弹性模量。波速与模量的关系来源于小振幅弹性波在各向异性固体中传播的理论(Musgrave(1970))。水晶声学(Holden-Day)。在本文中,我们将讨论在三种CMC (CAS-Nicalon)单向块上进行的实验,这些块的纤维含量分别为31、42和51%,使用超声波纵向、横向和表面声波(SAW)速度。并结合实验结果讨论了改进和自动化数据采集的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Announcement Editorial Board Announcement Announcement Foreword
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1