Enhancing the Thermal and Kinetic Stability of Ketol-Acid Reductoisomerase, a Central Catalyst of a Cell-Free Enzyme Cascade for the Manufacture of Platform Chemicals

Y. Lv, Shan Zheng, A. Goldenzweig, Fengjiang Liu, Yan Gao, Xiuna Yang, Ajit Kandale, R. McGeary, Simon J. Williams, B. Kobe, M. Schembri, M. Landsberg, Bin Wu, T. Brück, V. Sieber, M. Bodén, Z. Rao, S. Fleishman, G. Schenk, L. Guddat
{"title":"Enhancing the Thermal and Kinetic Stability of Ketol-Acid Reductoisomerase, a Central Catalyst of a Cell-Free Enzyme Cascade for the Manufacture of Platform Chemicals","authors":"Y. Lv, Shan Zheng, A. Goldenzweig, Fengjiang Liu, Yan Gao, Xiuna Yang, Ajit Kandale, R. McGeary, Simon J. Williams, B. Kobe, M. Schembri, M. Landsberg, Bin Wu, T. Brück, V. Sieber, M. Bodén, Z. Rao, S. Fleishman, G. Schenk, L. Guddat","doi":"10.3390/applbiosci1020011","DOIUrl":null,"url":null,"abstract":"The branched-chain amino acids (BCAAs) leucine, isoleucine and valine are synthesized via a common biosynthetic pathway. Ketol-acid reductoisomerase (KARI) is the second enzyme in this pathway. In addition to its role in BCAA biosynthesis, KARI catalyzes two rate-limiting steps that are key components of a cell-free biofuel biosynthesis route. For industrial applications, reaction temperature and enzyme stability are key factors that affect process robustness and product yield. Here, we have solved the cryo-EM structure (2.94 Å resolution) of a homododecameric Class I KARI (from Campylobacter jejuni) and demonstrated how a triad of amino acid side chains plays a crucial role in promoting the oligomerization of this enzyme. Importantly, both its thermal and solvent stability are greatly enhanced in the dodecameric state when compared to its dimeric counterpart (apparent melting temperatures (Tm) of 83.1 °C and 51.5 °C, respectively). We also employed protein design (PROSS) for a tetrameric Class II KARI (from Escherichia coli) to generate a variant with improved thermal and solvent stabilities. In total, 34 mutations were introduced, which did not affect the oligomeric state of this enzyme but resulted in a fully functional catalyst with a significantly elevated Tm (58.5 °C vs. 47.9 °C for the native version).","PeriodicalId":14998,"journal":{"name":"Journal of Applied Biosciences","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/applbiosci1020011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The branched-chain amino acids (BCAAs) leucine, isoleucine and valine are synthesized via a common biosynthetic pathway. Ketol-acid reductoisomerase (KARI) is the second enzyme in this pathway. In addition to its role in BCAA biosynthesis, KARI catalyzes two rate-limiting steps that are key components of a cell-free biofuel biosynthesis route. For industrial applications, reaction temperature and enzyme stability are key factors that affect process robustness and product yield. Here, we have solved the cryo-EM structure (2.94 Å resolution) of a homododecameric Class I KARI (from Campylobacter jejuni) and demonstrated how a triad of amino acid side chains plays a crucial role in promoting the oligomerization of this enzyme. Importantly, both its thermal and solvent stability are greatly enhanced in the dodecameric state when compared to its dimeric counterpart (apparent melting temperatures (Tm) of 83.1 °C and 51.5 °C, respectively). We also employed protein design (PROSS) for a tetrameric Class II KARI (from Escherichia coli) to generate a variant with improved thermal and solvent stabilities. In total, 34 mutations were introduced, which did not affect the oligomeric state of this enzyme but resulted in a fully functional catalyst with a significantly elevated Tm (58.5 °C vs. 47.9 °C for the native version).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
提高酮酸还原异构酶的热稳定性和动力学稳定性,酮酸还原异构酶是制造平台化学品的无细胞酶级联的中心催化剂
支链氨基酸亮氨酸、异亮氨酸和缬氨酸是通过共同的生物合成途径合成的。酮酸还原异构酶(KARI)是该途径中的第二个酶。除了在BCAA生物合成中发挥作用外,KARI还催化两个限速步骤,这两个步骤是无细胞生物燃料生物合成路线的关键组成部分。在工业应用中,反应温度和酶的稳定性是影响工艺稳健性和产品收率的关键因素。在这里,我们已经解决了同源十二聚体I类KARI(来自空肠弯曲杆菌)的低温电镜结构(2.94 Å分辨率),并证明了三个氨基酸侧链如何在促进该酶的寡聚化中起关键作用。重要的是,与二聚体相比,它在十二聚体状态下的热稳定性和溶剂稳定性都大大提高(表观熔融温度(Tm)分别为83.1℃和51.5℃)。我们还采用蛋白质设计(PROSS)对四聚体II类KARI(来自大肠杆菌)产生了一种具有更好的热稳定性和溶剂稳定性的变体。总共引入了34个突变,这些突变没有影响该酶的低聚状态,但导致了一个功能完全的催化剂,其Tm显著升高(天然版本为58.5°C,而天然版本为47.9°C)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Chaperone Hsp90, a Key Player in Salivary Gland Tumorigenesis Determination of Target Crop Loads for Maximising Fruit Quality and Return Bloom in Several Apple Cultivars Agrigenomic Diversity Unleashed: Current Single Nucleotide Polymorphism Genotyping Methods for the Agricultural Sciences The Food-Crushing Reflex and Its Inhibition Effects of Patterned Electromagnetic Fields and Light-Emitting Diodes on Cancer Cells: Impact on Cell Density and Biophoton Emission When Applied Individually vs. Simultaneously
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1