Interval-based Robot Localization with Uncertainty Evaluation

Yuehan Jiang, Aaronkumar Ehambram, Bernardo Wagner
{"title":"Interval-based Robot Localization with Uncertainty Evaluation","authors":"Yuehan Jiang, Aaronkumar Ehambram, Bernardo Wagner","doi":"10.5220/0011143700003271","DOIUrl":null,"url":null,"abstract":": Being able to provide trustworthy localization for a robot in a map is essential for various tasks with safety-related requirements. In contrast to classical probabilistic approaches that represent the uncertainty as a Gaussian distribution, we use interval error bounds for the uncertainty estimation of a localization problem. To tackle and identify the limitations of probabilistic localization uncertainty estimation, we carry out comparison experiments between an interval-based method and a factor graph-based probabilistic method. Different measurement error models are propagated by the two methods to derive the robot pose uncertainty estimates. Results show that the probabilistic approach can provide very good pose uncertainty when there is no non-Gaussian systematic sensor error. However, if the measurements have unmodeled systematic errors, the interval approach is able to robustly contain the true poses whereas the probabilistic approach gives completely wrong results.","PeriodicalId":6436,"journal":{"name":"2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010)","volume":"60 1","pages":"296-303"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0011143700003271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

: Being able to provide trustworthy localization for a robot in a map is essential for various tasks with safety-related requirements. In contrast to classical probabilistic approaches that represent the uncertainty as a Gaussian distribution, we use interval error bounds for the uncertainty estimation of a localization problem. To tackle and identify the limitations of probabilistic localization uncertainty estimation, we carry out comparison experiments between an interval-based method and a factor graph-based probabilistic method. Different measurement error models are propagated by the two methods to derive the robot pose uncertainty estimates. Results show that the probabilistic approach can provide very good pose uncertainty when there is no non-Gaussian systematic sensor error. However, if the measurements have unmodeled systematic errors, the interval approach is able to robustly contain the true poses whereas the probabilistic approach gives completely wrong results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于不确定性评价的区间机器人定位
能够在地图上为机器人提供可靠的定位对于各种具有安全相关要求的任务至关重要。与将不确定性表示为高斯分布的经典概率方法相反,我们使用区间误差界来估计局部化问题的不确定性。为了解决和识别概率定位不确定性估计的局限性,我们对基于区间的方法和基于因子图的概率方法进行了比较实验。通过两种方法传播不同的测量误差模型,得出机器人位姿不确定性估计。结果表明,在不存在非高斯系统传感器误差的情况下,概率方法可以提供很好的姿态不确定性。然而,如果测量有未建模的系统误差,区间方法能够鲁棒地包含真实的姿态,而概率方法给出完全错误的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Informatics in Control, Automation and Robotics: 18th International Conference, ICINCO 2021 Lieusaint - Paris, France, July 6–8, 2021, Revised Selected Papers A Digital Twin Setup for Safety-aware Optimization of a Cyber-physical System Segmenting Maps by Analyzing Free and Occupied Regions with Voronoi Diagrams Efficient Verification of CPA Lyapunov Functions Open-loop Control of a Soft Arm in Throwing Tasks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1