{"title":"Thermodynamic and economic analyses of natural gas combined cycle power plants with and without the presence of organic Rankine cycle","authors":"Feng Gu, Zhaowei Zhu, Q. Shi, R. Li","doi":"10.1177/01445987231183178","DOIUrl":null,"url":null,"abstract":"This study performs the simulation and energy, exergy, and economic analyses of an organic Rankine cycle (ORC) integrated with a natural gas combined cycle. Working fluids studied in this research are ammonia, isobutane, R-11, R-113, and R-141b. The power plant and ORC are simulated using Aspen HYSYS software. The results show that using the ORC leads to an improvement in the thermo-economic indexes of the combined cycle power plant. The sensitivity analysis also demonstrated that using ammonia and isobutane as working fluids results in the highest exergy destruction and the lowest exergy and energy efficiencies; therefore, they are unsuitable. On the other hand, a comparison of thermo-economic results illustrated that among the studied working fluids, R-113 is the desirable selection. According to the simulation, it is deduced that employing R-113 working fluid leads to the net power generation of the plant increasing by 2.48%, the cost of electricity decreasing by 10.75%, and the total energy efficiency of the power plant increasing by 6.02%.","PeriodicalId":11606,"journal":{"name":"Energy Exploration & Exploitation","volume":"42 1","pages":"1956 - 1982"},"PeriodicalIF":1.9000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Exploration & Exploitation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/01445987231183178","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This study performs the simulation and energy, exergy, and economic analyses of an organic Rankine cycle (ORC) integrated with a natural gas combined cycle. Working fluids studied in this research are ammonia, isobutane, R-11, R-113, and R-141b. The power plant and ORC are simulated using Aspen HYSYS software. The results show that using the ORC leads to an improvement in the thermo-economic indexes of the combined cycle power plant. The sensitivity analysis also demonstrated that using ammonia and isobutane as working fluids results in the highest exergy destruction and the lowest exergy and energy efficiencies; therefore, they are unsuitable. On the other hand, a comparison of thermo-economic results illustrated that among the studied working fluids, R-113 is the desirable selection. According to the simulation, it is deduced that employing R-113 working fluid leads to the net power generation of the plant increasing by 2.48%, the cost of electricity decreasing by 10.75%, and the total energy efficiency of the power plant increasing by 6.02%.
期刊介绍:
Energy Exploration & Exploitation is a peer-reviewed, open access journal that provides up-to-date, informative reviews and original articles on important issues in the exploration, exploitation, use and economics of the world’s energy resources.