{"title":"A framework to support dependability evaluation of WSNs from AADL models","authors":"M. Martins, P. Portugal, F. Vasques","doi":"10.1109/ETFA.2015.7301560","DOIUrl":null,"url":null,"abstract":"Wireless Sensor Networks (WSNs) have been widely considered as a promising solution to support different types of applications on industrial environments. Many of these applications impose strict dependability requirements, since a system failure may result in economic losses, or damage for human life or to the environment. The absence of an effective approach enabling the dependability evaluation of WSNs prevents system designers to forecast these type of scenarios or to optimize decisions regarding the criticality of the devices, network topology, levels of redundancy and network robustness that minimize the occurrence of faults. To bridge the gap between research achievements and industrial development, we present in this paper a framework to support the dependability evaluation of WSNs based on the automated generation of analytical dependability models from high level AADL (Architecture Analysis and Description Language) architecture models. The main objective of this framework is to relieve the end user from a deep knowledge of dependability modeling techniques and evaluation methods, focusing on their knowledge of the behavior and structure of the system.","PeriodicalId":6862,"journal":{"name":"2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA)","volume":"46 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2015.7301560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Wireless Sensor Networks (WSNs) have been widely considered as a promising solution to support different types of applications on industrial environments. Many of these applications impose strict dependability requirements, since a system failure may result in economic losses, or damage for human life or to the environment. The absence of an effective approach enabling the dependability evaluation of WSNs prevents system designers to forecast these type of scenarios or to optimize decisions regarding the criticality of the devices, network topology, levels of redundancy and network robustness that minimize the occurrence of faults. To bridge the gap between research achievements and industrial development, we present in this paper a framework to support the dependability evaluation of WSNs based on the automated generation of analytical dependability models from high level AADL (Architecture Analysis and Description Language) architecture models. The main objective of this framework is to relieve the end user from a deep knowledge of dependability modeling techniques and evaluation methods, focusing on their knowledge of the behavior and structure of the system.