{"title":"Thermophoretic particle deposition efficiency in turbulent tube flow","authors":"Jyh-Shyan Lin , Chuen-Jinn Tsai , Kuo-Lun Tung , Hann-Chyuan Chiang","doi":"10.1016/j.jcice.2008.01.001","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigated the thermophoretic particle deposition efficiency numerically. The critical trajectory was used to calculate thermophoretic particle deposition in turbulent tube flow. The numerical results obtained in turbulent flow regime in this study were validated by particle deposition efficiency measurements with monodisperse particles (particle diameter ranges from 0.038 to 0.498<!--> <!-->μm) in a tube (1.18<!--> <!-->m long, 0.43<!--> <!-->cm i.d., stainless-steel tube). The theoretical predictions are found to fit the experimental data of Tsai <em>et al.</em> [Tsai, C. J., J. S. Lin, S. G. Aggarwal, and D. R. Chen, “Thermophoretic Deposition of Particles in Laminar and Turbulent Tube Flows,” <em>Aerosol Sci. Technol.</em>, <strong>38</strong>, 131 (2004)] very well in turbulent flows. In addition, an empirical expression has been developed to predict the thermophoretic deposition efficiency in turbulent tube flow.</p></div>","PeriodicalId":17285,"journal":{"name":"Journal of The Chinese Institute of Chemical Engineers","volume":"39 3","pages":"Pages 281-285"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jcice.2008.01.001","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Chinese Institute of Chemical Engineers","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0368165308000051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
This study investigated the thermophoretic particle deposition efficiency numerically. The critical trajectory was used to calculate thermophoretic particle deposition in turbulent tube flow. The numerical results obtained in turbulent flow regime in this study were validated by particle deposition efficiency measurements with monodisperse particles (particle diameter ranges from 0.038 to 0.498 μm) in a tube (1.18 m long, 0.43 cm i.d., stainless-steel tube). The theoretical predictions are found to fit the experimental data of Tsai et al. [Tsai, C. J., J. S. Lin, S. G. Aggarwal, and D. R. Chen, “Thermophoretic Deposition of Particles in Laminar and Turbulent Tube Flows,” Aerosol Sci. Technol., 38, 131 (2004)] very well in turbulent flows. In addition, an empirical expression has been developed to predict the thermophoretic deposition efficiency in turbulent tube flow.