Tariq Al-Moqri, Xiao Haijun, J. P. Namahoro, E. Alfalahi, Ibrahim Alwesabi
{"title":"Exploiting Machine Learning Algorithms for Predicting Crash Injury Severity in Yemen: Hospital Case Study","authors":"Tariq Al-Moqri, Xiao Haijun, J. P. Namahoro, E. Alfalahi, Ibrahim Alwesabi","doi":"10.11648/J.ACM.20200905.12","DOIUrl":null,"url":null,"abstract":"This study focused on exploiting machine learning algorithms for classifying and predicting injury severity of vehicle crashes in Yemen. The primary objective is to assess the contribution of the leading causes of injury severity. The selected machine learning algorithms compared with traditional statistical methods. The filtrated second data collected within two months (August-October 2015) from the two main hospitals included 156 injured patients of vehicle crashes reported from 128 locations. The data classified into three categories of injury severity: Severe, Serious, and Minor. It balanced using a synthetic minority oversampling technique (SMOTE). Multinomial logit model (MNL) compared with five machine learning classifiers: Naive Bayes (NB), J48 Decision Tree, Random Forest (RF), Support Vector Machine (SVM), and Multilayer Perceptron (MLP). The results showed that most of machine learning-based algorithms performed well in predicting and classifying the severity of the traffic injury. Out of five classifiers, RF is the best classifier with 94.84% of accuracy. The characteristics of road type, total injured person, crash type, road user, transport way to the emergency department (ED), and accident action were the most critical factors in the severity of the traffic injury. Enhancing strategies for using roadway facilities may improve the safety of road users and regulations.","PeriodicalId":55503,"journal":{"name":"Applied and Computational Mathematics","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.11648/J.ACM.20200905.12","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 9
Abstract
This study focused on exploiting machine learning algorithms for classifying and predicting injury severity of vehicle crashes in Yemen. The primary objective is to assess the contribution of the leading causes of injury severity. The selected machine learning algorithms compared with traditional statistical methods. The filtrated second data collected within two months (August-October 2015) from the two main hospitals included 156 injured patients of vehicle crashes reported from 128 locations. The data classified into three categories of injury severity: Severe, Serious, and Minor. It balanced using a synthetic minority oversampling technique (SMOTE). Multinomial logit model (MNL) compared with five machine learning classifiers: Naive Bayes (NB), J48 Decision Tree, Random Forest (RF), Support Vector Machine (SVM), and Multilayer Perceptron (MLP). The results showed that most of machine learning-based algorithms performed well in predicting and classifying the severity of the traffic injury. Out of five classifiers, RF is the best classifier with 94.84% of accuracy. The characteristics of road type, total injured person, crash type, road user, transport way to the emergency department (ED), and accident action were the most critical factors in the severity of the traffic injury. Enhancing strategies for using roadway facilities may improve the safety of road users and regulations.
期刊介绍:
Applied and Computational Mathematics (ISSN Online: 2328-5613, ISSN Print: 2328-5605) is a prestigious journal that focuses on the field of applied and computational mathematics. It is driven by the computational revolution and places a strong emphasis on innovative applied mathematics with potential for real-world applicability and practicality.
The journal caters to a broad audience of applied mathematicians and scientists who are interested in the advancement of mathematical principles and practical aspects of computational mathematics. Researchers from various disciplines can benefit from the diverse range of topics covered in ACM. To ensure the publication of high-quality content, all research articles undergo a rigorous peer review process. This process includes an initial screening by the editors and anonymous evaluation by expert reviewers. This guarantees that only the most valuable and accurate research is published in ACM.