{"title":"Stream Processing Tools for Analyzing Objects in Motion Sending High-Volume Location Data","authors":"Krzysztof Węcel, Marcin Szmydt, Milena Stróżyna","doi":"10.52825/bis.v1i.41","DOIUrl":null,"url":null,"abstract":"Recently we observe a significant increase in the amount of easily accessible data on transport and mobility. This data is mostly massive streams of high velocity, magnitude, and heterogeneity, which represent a flow of goods, shipments and the movements of fleet. It is therefore necessary to develop a scalable framework and apply tools capable of handling these streams. In the paper we propose an approach for the selection of software for stream processing solutions that may be used in the transportation domain. We provide an overview of potential stream processing technologies, followed by the method for choosing the selected software for real-time analysis of data streams coming from objects in motion. We have selected two solutions: Apache Spark Streaming and Apache Flink, and benchmarked them on a real-world task. We identified the caveats and challenges when it comes to implementation of the solution in practice.","PeriodicalId":56020,"journal":{"name":"Business & Information Systems Engineering","volume":"67 1","pages":"257-268"},"PeriodicalIF":7.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Business & Information Systems Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.52825/bis.v1i.41","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1
Abstract
Recently we observe a significant increase in the amount of easily accessible data on transport and mobility. This data is mostly massive streams of high velocity, magnitude, and heterogeneity, which represent a flow of goods, shipments and the movements of fleet. It is therefore necessary to develop a scalable framework and apply tools capable of handling these streams. In the paper we propose an approach for the selection of software for stream processing solutions that may be used in the transportation domain. We provide an overview of potential stream processing technologies, followed by the method for choosing the selected software for real-time analysis of data streams coming from objects in motion. We have selected two solutions: Apache Spark Streaming and Apache Flink, and benchmarked them on a real-world task. We identified the caveats and challenges when it comes to implementation of the solution in practice.
期刊介绍:
Business & Information Systems Engineering (BISE) is a double-blind peer-reviewed journal with a primary focus on the design and utilization of information systems for social welfare. The journal aims to contribute to the understanding and advancement of information systems in ways that benefit societal well-being.