Single and combined toxic effects of clarithromycin and levofloxacin on Microcystis aeruginosa

IF 3.6 4区 环境科学与生态学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Environmental Pollutants and Bioavailability Pub Date : 2022-10-06 DOI:10.1080/26395940.2022.2130825
Yixiao Wu, Huijun Ding, L. Wan, Weihao Zhang, Yan Zhang, L. Yang, Chong Zhao
{"title":"Single and combined toxic effects of clarithromycin and levofloxacin on Microcystis aeruginosa","authors":"Yixiao Wu, Huijun Ding, L. Wan, Weihao Zhang, Yan Zhang, L. Yang, Chong Zhao","doi":"10.1080/26395940.2022.2130825","DOIUrl":null,"url":null,"abstract":"ABSTRACT This study compared the single and joint toxic effects of clarithromycin (CLA) and levofloxacin (LEV) on Microcystis aeruginosa. CLA was more toxic to algae than LEV, and the 96h-EC50s were 43.31 and 437.6 µg/L, respectively. The synergetic interaction of two antibiotics was detected. This synergetic action was also observed on Fv/Fm, chlorophyll a, and phycobiliprotein. The increase in reactive oxygen species (ROS) and malonaldehyde demonstrated that antibiotic exposure caused severe oxidative stress, which can destroy the membrane system, hinder photosynthesis and finally inhibit cell growth. The antioxidant enzyme activities were improved significantly, especially in the joint exposure treatment, which indicates that the antioxidant defense system can be activated to scavenge ROS. The release of microcystins (MCs) was accelerated under single or combined antibiotic exposure. The promotion of MCs discharge from cyanobacteria caused by the co-occurrence of CLA and LEV in water environment may pose a severe ecological risk to ecosystem.","PeriodicalId":11785,"journal":{"name":"Environmental Pollutants and Bioavailability","volume":"10 1","pages":"482 - 495"},"PeriodicalIF":3.6000,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollutants and Bioavailability","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/26395940.2022.2130825","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

ABSTRACT This study compared the single and joint toxic effects of clarithromycin (CLA) and levofloxacin (LEV) on Microcystis aeruginosa. CLA was more toxic to algae than LEV, and the 96h-EC50s were 43.31 and 437.6 µg/L, respectively. The synergetic interaction of two antibiotics was detected. This synergetic action was also observed on Fv/Fm, chlorophyll a, and phycobiliprotein. The increase in reactive oxygen species (ROS) and malonaldehyde demonstrated that antibiotic exposure caused severe oxidative stress, which can destroy the membrane system, hinder photosynthesis and finally inhibit cell growth. The antioxidant enzyme activities were improved significantly, especially in the joint exposure treatment, which indicates that the antioxidant defense system can be activated to scavenge ROS. The release of microcystins (MCs) was accelerated under single or combined antibiotic exposure. The promotion of MCs discharge from cyanobacteria caused by the co-occurrence of CLA and LEV in water environment may pose a severe ecological risk to ecosystem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
克拉霉素与左氧氟沙星单独及联合对铜绿微囊藻的毒性作用
摘要本研究比较了克拉霉素(CLA)和左氧氟沙星(LEV)单独和联合对铜绿微囊藻的毒性作用。CLA对藻类的毒性大于LEV, 96h- ec50分别为43.31µg/L和437.6µg/L。检测两种抗生素的协同相互作用。在Fv/Fm、叶绿素a和藻胆蛋白上也观察到这种协同作用。活性氧(ROS)和丙二醛的增加表明,抗生素暴露引起严重的氧化应激,破坏膜系统,阻碍光合作用,最终抑制细胞生长。抗氧化酶活性显著提高,特别是在联合暴露处理中,这表明抗氧化防御系统可以被激活,清除ROS。微囊藻毒素(MCs)的释放在单一或联合抗生素暴露下加速。水环境中CLA和LEV的共存促进蓝藻MCs的排放,可能对生态系统造成严重的生态风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Pollutants and Bioavailability
Environmental Pollutants and Bioavailability Chemical Engineering-Chemical Health and Safety
CiteScore
4.30
自引率
3.00%
发文量
47
审稿时长
13 weeks
期刊介绍: Environmental Pollutants & Bioavailability is a peer-reviewed open access forum for insights on the chemical aspects of pollutants in the environment and biota, and their impacts on the uptake of the substances by living organisms. Topics include the occurrence, distribution, transport, transformation, transfer, fate, and effects of environmental pollutants, as well as their impact on living organisms. Substances of interests include heavy metals, persistent organic pollutants, and emerging contaminants, such as engineered nanomaterials, as well as pharmaceuticals and personal-care products as pollutants.
期刊最新文献
Environmental risk and source analysis of heavy metals in tailings sand and surrounding soils in Huangshaping mining area Alleviating heavy metal accumulation and pathogens’ abundance through processing proper ratio of duck feces and food waste by Black solider fly larvae Effects of the major metal components in urban Asian PM2.5 on lung inflammation and abnormal electrolyte levels: an in vivo study based on review data Non-wood-based biochars as promising and eco-friendly adsorbents for chromium hexavalent Cr (VI) removal from aquatic systems: state-of-the-art, limitations, and potential future directions Analysis of monocyte chemoattractant protein-1 and interleukin-1β levels with adrenocorticotropic hormone levels in farmers: early detection of vascular inflammation due to pesticide exposure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1