{"title":"Pedestrian detection in low resolution videos","authors":"Hisham Sager, W. Hoff","doi":"10.1109/WACV.2014.6836038","DOIUrl":null,"url":null,"abstract":"Pedestrian detection in low resolution videos can be challenging. In outdoor surveillance scenarios, the size of pedestrians in the images is often very small (around 20 pixels tall). The most common and successful approaches for single frame pedestrian detection use gradient-based features and a support vector machine classifier. We propose an extension of these ideas, and develop a new algorithm that extracts gradient features from a spatiotemporal volume, consisting of a short sequence of images (about one second in duration). The additional information provided by the motion of the person compensates for the loss of resolution. On standard datasets (PETS2001, VIRAT) we show a significant improvement in performance over single-frame detection.","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"140 1","pages":"668-673"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2014.6836038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Pedestrian detection in low resolution videos can be challenging. In outdoor surveillance scenarios, the size of pedestrians in the images is often very small (around 20 pixels tall). The most common and successful approaches for single frame pedestrian detection use gradient-based features and a support vector machine classifier. We propose an extension of these ideas, and develop a new algorithm that extracts gradient features from a spatiotemporal volume, consisting of a short sequence of images (about one second in duration). The additional information provided by the motion of the person compensates for the loss of resolution. On standard datasets (PETS2001, VIRAT) we show a significant improvement in performance over single-frame detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低分辨率视频中的行人检测
低分辨率视频中的行人检测可能具有挑战性。在户外监控场景中,图像中的行人尺寸通常非常小(大约20像素高)。最常见和成功的单帧行人检测方法使用基于梯度的特征和支持向量机分类器。我们提出了这些思想的扩展,并开发了一种新的算法,从由短序列图像(持续时间约为一秒)组成的时空体中提取梯度特征。人的运动所提供的额外信息补偿了解析度的损失。在标准数据集(PETS2001, VIRAT)上,我们显示了比单帧检测性能的显著改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ordinal Classification with Distance Regularization for Robust Brain Age Prediction. Brainomaly: Unsupervised Neurologic Disease Detection Utilizing Unannotated T1-weighted Brain MR Images. PathLDM: Text conditioned Latent Diffusion Model for Histopathology. Domain Generalization with Correlated Style Uncertainty. Semantic-aware Video Representation for Few-shot Action Recognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1