MacroBase

Firas Abuzaid, Peter D. Bailis, Jialin Ding, Edward Gan, S. Madden, D. Narayanan, Kexin Rong, S. Suri
{"title":"MacroBase","authors":"Firas Abuzaid, Peter D. Bailis, Jialin Ding, Edward Gan, S. Madden, D. Narayanan, Kexin Rong, S. Suri","doi":"10.1145/3276463","DOIUrl":null,"url":null,"abstract":"As data volumes continue to rise, manual inspection is becoming increasingly untenable. In response, we present MacroBase, a data analytics engine that prioritizes end-user attention in high-volume fast data streams. MacroBase enables efficient, accurate, and modular analyses that highlight and aggregate important and unusual behavior, acting as a search engine for fast data. MacroBase is able to deliver order-of-magnitude speedups over alternatives by optimizing the combination of explanation (i.e., feature selection) and classification tasks and by leveraging a new reservoir sampler and heavy-hitters sketch specialized for fast data streams. As a result, MacroBase delivers accurate results at speeds of up to 2M events per second per query on a single core. The system has delivered meaningful results in production, including at a telematics company monitoring hundreds of thousands of vehicles.","PeriodicalId":6983,"journal":{"name":"ACM Transactions on Database Systems (TODS)","volume":"17 1","pages":"1 - 45"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Database Systems (TODS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3276463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

As data volumes continue to rise, manual inspection is becoming increasingly untenable. In response, we present MacroBase, a data analytics engine that prioritizes end-user attention in high-volume fast data streams. MacroBase enables efficient, accurate, and modular analyses that highlight and aggregate important and unusual behavior, acting as a search engine for fast data. MacroBase is able to deliver order-of-magnitude speedups over alternatives by optimizing the combination of explanation (i.e., feature selection) and classification tasks and by leveraging a new reservoir sampler and heavy-hitters sketch specialized for fast data streams. As a result, MacroBase delivers accurate results at speeds of up to 2M events per second per query on a single core. The system has delivered meaningful results in production, including at a telematics company monitoring hundreds of thousands of vehicles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随着数据量的不断增加,人工检查变得越来越站不住脚。作为回应,我们提出了MacroBase,这是一个数据分析引擎,可以在大容量快速数据流中优先考虑最终用户的注意力。MacroBase支持高效、准确和模块化的分析,突出显示和聚合重要的和不寻常的行为,充当快速数据的搜索引擎。通过优化解释(即特征选择)和分类任务的组合,以及利用新的储层采样器和专门用于快速数据流的重量级草图,MacroBase能够提供数量级的速度提升。因此,MacroBase在单个核心上以每秒2M个事件的速度提供准确的结果。该系统已经在生产中提供了有意义的结果,包括在一家远程信息处理公司监控数十万辆汽车。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On Finding Rank Regret Representatives Answering (Unions of) Conjunctive Queries using Random Access and Random-Order Enumeration Persistent Summaries Influence Maximization Revisited: Efficient Sampling with Bound Tightened The Space-Efficient Core of Vadalog
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1