Firefly: illuminating future network-on-chip with nanophotonics

Yan Pan, Prabhat Kumar, John Kim, G. Memik, Yu Zhang, A. Choudhary
{"title":"Firefly: illuminating future network-on-chip with nanophotonics","authors":"Yan Pan, Prabhat Kumar, John Kim, G. Memik, Yu Zhang, A. Choudhary","doi":"10.1145/1555754.1555808","DOIUrl":null,"url":null,"abstract":"Future many-core processors will require high-performance yet energy-efficient on-chip networks to provide a communication substrate for the increasing number of cores. Recent advances in silicon nanophotonics create new opportunities for on-chip networks. To efficiently exploit the benefits of nanophotonics, we propose Firefly - a hybrid, hierarchical network architecture. Firefly consists of clusters of nodes that are connected using conventional, electrical signaling while the inter-cluster communication is done using nanophotonics - exploiting the benefits of electrical signaling for short, local communication while nanophotonics is used only for global communication to realize an efficient on-chip network. Crossbar architecture is used for inter-cluster communication. However, to avoid global arbitration, the crossbar is partitioned into multiple, logical crossbars and their arbitration is localized. Our evaluations show that Firefly improves the performance by up to 57% compared to an all-electrical concentrated mesh (CMESH) topology on adversarial traffic patterns and up to 54% compared to an all-optical crossbar (OP XBAR) on traffic patterns with locality. If the energy-delay-product is compared, Firefly improves the efficiency of the on-chip network by up to 51% and 38% compared to CMESH and OP XBAR, respectively.","PeriodicalId":91388,"journal":{"name":"Proceedings. International Symposium on Computer Architecture","volume":"12 1","pages":"429-440"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"420","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Symposium on Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1555754.1555808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 420

Abstract

Future many-core processors will require high-performance yet energy-efficient on-chip networks to provide a communication substrate for the increasing number of cores. Recent advances in silicon nanophotonics create new opportunities for on-chip networks. To efficiently exploit the benefits of nanophotonics, we propose Firefly - a hybrid, hierarchical network architecture. Firefly consists of clusters of nodes that are connected using conventional, electrical signaling while the inter-cluster communication is done using nanophotonics - exploiting the benefits of electrical signaling for short, local communication while nanophotonics is used only for global communication to realize an efficient on-chip network. Crossbar architecture is used for inter-cluster communication. However, to avoid global arbitration, the crossbar is partitioned into multiple, logical crossbars and their arbitration is localized. Our evaluations show that Firefly improves the performance by up to 57% compared to an all-electrical concentrated mesh (CMESH) topology on adversarial traffic patterns and up to 54% compared to an all-optical crossbar (OP XBAR) on traffic patterns with locality. If the energy-delay-product is compared, Firefly improves the efficiency of the on-chip network by up to 51% and 38% compared to CMESH and OP XBAR, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
萤火虫:用纳米光子学照亮未来的片上网络
未来的多核处理器将需要高性能且节能的片上网络,为越来越多的核心提供通信基板。硅纳米光子学的最新进展为片上网络创造了新的机会。为了有效地利用纳米光子学的优势,我们提出了萤火虫-一个混合的,分层的网络架构。萤火虫由使用传统电信号连接的节点簇组成,而簇间通信使用纳米光子学完成-利用电信号的优势进行短时间的局部通信,而纳米光子学仅用于全局通信,以实现高效的片上网络。集群间通信采用Crossbar架构。然而,为了避免全局仲裁,交叉栏被划分为多个逻辑交叉栏,并且它们的仲裁是局部的。我们的评估表明,在对抗性交通模式上,Firefly的性能比全电集中网格(CMESH)拓扑提高了57%,在具有局部性的交通模式上,与全光交叉条(OP XBAR)拓扑相比,Firefly的性能提高了54%。如果比较能量延迟乘积,Firefly与CMESH和OP XBAR相比,将片上网络的效率分别提高了51%和38%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ISCA '22: The 49th Annual International Symposium on Computer Architecture, New York, New York, USA, June 18 - 22, 2022 Special-purpose and future architectures Computer memory systems Basics of the central processing unit FRONT MATTER
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1