Structural Shielding Design of CT Facility using Monte Carlo Simulation

A. Yadav, Basilia Quispe Huillcara, Pablo Víctor Cerón Ramírez, M. S. Aquino, Miguel Ángel Vallejo Hernández
{"title":"Structural Shielding Design of CT Facility using Monte Carlo Simulation","authors":"A. Yadav, Basilia Quispe Huillcara, Pablo Víctor Cerón Ramírez, M. S. Aquino, Miguel Ángel Vallejo Hernández","doi":"10.15415/JNP.2021.82018","DOIUrl":null,"url":null,"abstract":"Radiation application in medicine offers extraordinary benefits. But radiation is like a double-edged sword, it has both benefits and associated risks on the community in contact. To justify the safety of workers and members of the public, regulated use of radiation is assessed by the radiation protection protocols. The aim of this study is to design a Computed Tomography (CT) facility with a simplified model of CT scanner, whose shielding follows the guidelines of National Council on Radiation Protection and Measurements (NCRP) Report No. 147. To design the study model, Monte Carlo (MC) radiation transport code in MCNPX 2.6.0 was used for the simulation. Furthermore, MCNPX was used to measure the photon flux in a vicinity or the detector cell. To validate the functioning of the X-ray tube, the experimental results were compared with the X-ray Transition Energies Database of National Institute of Standards and Technology, U.S. Department of Commerce. The results obtained were within 0.60% of relative error. To confirm the functioning of shielding design, radiation protection quantity, air kerma was measured at several points outside, and inside of the CT room and they were under the radiation dose recommended by NCRP, which demonstrates that the shielding design wassuccessful in blocking the radiation. The study can be used for an easy evaluation of any CT room within the framework of the model of the study.","PeriodicalId":16534,"journal":{"name":"Journal of Nuclear Physics, Material Sciences, Radiation and Applications","volume":"2013 1","pages":"143-147"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Physics, Material Sciences, Radiation and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15415/JNP.2021.82018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Radiation application in medicine offers extraordinary benefits. But radiation is like a double-edged sword, it has both benefits and associated risks on the community in contact. To justify the safety of workers and members of the public, regulated use of radiation is assessed by the radiation protection protocols. The aim of this study is to design a Computed Tomography (CT) facility with a simplified model of CT scanner, whose shielding follows the guidelines of National Council on Radiation Protection and Measurements (NCRP) Report No. 147. To design the study model, Monte Carlo (MC) radiation transport code in MCNPX 2.6.0 was used for the simulation. Furthermore, MCNPX was used to measure the photon flux in a vicinity or the detector cell. To validate the functioning of the X-ray tube, the experimental results were compared with the X-ray Transition Energies Database of National Institute of Standards and Technology, U.S. Department of Commerce. The results obtained were within 0.60% of relative error. To confirm the functioning of shielding design, radiation protection quantity, air kerma was measured at several points outside, and inside of the CT room and they were under the radiation dose recommended by NCRP, which demonstrates that the shielding design wassuccessful in blocking the radiation. The study can be used for an easy evaluation of any CT room within the framework of the model of the study.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于蒙特卡罗模拟的CT设备结构屏蔽设计
辐射在医学上的应用提供了非凡的好处。但辐射就像一把双刃剑,它对接触的社区既有好处,也有相关的风险。为了确保工作人员和公众的安全,辐射防护规程对辐射的管制使用进行了评估。本研究的目的是设计一种计算机断层扫描(CT)设备,其CT扫描仪的简化模型,其屏蔽遵循国家辐射防护和测量委员会(NCRP)第147号报告的指导方针。为设计研究模型,采用MCNPX 2.6.0中的蒙特卡罗(MC)辐射输运代码进行仿真。此外,MCNPX还用于测量探测器单元附近的光子通量。为了验证x射线管的功能,将实验结果与美国商务部国家标准与技术研究所的x射线跃迁能量数据库进行了比较。所得结果相对误差在0.60%以内。为了确认屏蔽设计的功能,在CT室内外的几个点测量了辐射防护量和空气可玛,均在NCRP推荐的辐射剂量下,表明屏蔽设计成功地阻挡了辐射。该研究可用于在研究模型框架内对任何CT室进行轻松评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Radii of Thorium Nuclides Lying in Between the Drip Lines Charge Radius And Neutron Skin Thickness Of Platinum And Osmium Isotopes Near The Nuclear Drip Lines Evaluation of Natural Radioactivity Levels and Exhalation rate of 222Rn and 220Rn in the Soil Samples from the Kuthiran Hills, Kerala, India Deformation Effect on Proton Bubble Structure in N = 28 Isotones Phase Shift Analysis for Neutron-Alpha Elastic Scattering Using Phase Function Method with Local Gaussian Potential
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1